MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1389
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1384 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  dvfsumlem2  26067  dvfsumlem2OLD  26068  noinfbnd2  27776  atbtwnexOLDN  39449  atbtwnex  39450  osumcllem7N  39964  lhpmcvr5N  40029  cdleme22f2  40349  cdlemefs32sn1aw  40416  cdlemg7aN  40627  cdlemg7N  40628  cdlemg8c  40631  cdlemg8  40633  cdlemg11aq  40640  cdlemg12b  40646  cdlemg12e  40649  cdlemg12g  40651  cdlemg13a  40653  cdlemg15a  40657  cdlemg17e  40667  cdlemg18d  40683  cdlemg19a  40685  cdlemg20  40687  cdlemg22  40689  cdlemg28a  40695  cdlemg29  40707  cdlemg44a  40733  cdlemk34  40912  cdlemn11pre  41212  dihord10  41225  dihord2pre  41227  dihmeetlem17N  41325
  Copyright terms: Public domain W3C validator