MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1387
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1382 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  dvfsumlem2  26087  dvfsumlem2OLD  26088  noinfbnd2  27794  atbtwnexOLDN  39404  atbtwnex  39405  osumcllem7N  39919  lhpmcvr5N  39984  cdleme22f2  40304  cdlemefs32sn1aw  40371  cdlemg7aN  40582  cdlemg7N  40583  cdlemg8c  40586  cdlemg8  40588  cdlemg11aq  40595  cdlemg12b  40601  cdlemg12e  40604  cdlemg12g  40606  cdlemg13a  40608  cdlemg15a  40612  cdlemg17e  40622  cdlemg18d  40638  cdlemg19a  40640  cdlemg20  40642  cdlemg22  40644  cdlemg28a  40650  cdlemg29  40662  cdlemg44a  40688  cdlemk34  40867  cdlemn11pre  41167  dihord10  41180  dihord2pre  41182  dihmeetlem17N  41280
  Copyright terms: Public domain W3C validator