MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1389
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1384 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dvfsumlem2  25940  dvfsumlem2OLD  25941  noinfbnd2  27650  atbtwnexOLDN  39448  atbtwnex  39449  osumcllem7N  39963  lhpmcvr5N  40028  cdleme22f2  40348  cdlemefs32sn1aw  40415  cdlemg7aN  40626  cdlemg7N  40627  cdlemg8c  40630  cdlemg8  40632  cdlemg11aq  40639  cdlemg12b  40645  cdlemg12e  40648  cdlemg12g  40650  cdlemg13a  40652  cdlemg15a  40656  cdlemg17e  40666  cdlemg18d  40682  cdlemg19a  40684  cdlemg20  40686  cdlemg22  40688  cdlemg28a  40694  cdlemg29  40706  cdlemg44a  40732  cdlemk34  40911  cdlemn11pre  41211  dihord10  41224  dihord2pre  41226  dihmeetlem17N  41324
  Copyright terms: Public domain W3C validator