Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl123anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl123anc.7 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl123anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl123anc.7 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 4, 5, 6, 7, 8 | syl113anc 1380 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: dvfsumlem2 25096 noinfbnd2 33861 atbtwnexOLDN 37388 atbtwnex 37389 osumcllem7N 37903 lhpmcvr5N 37968 cdleme22f2 38288 cdlemefs32sn1aw 38355 cdlemg7aN 38566 cdlemg7N 38567 cdlemg8c 38570 cdlemg8 38572 cdlemg11aq 38579 cdlemg12b 38585 cdlemg12e 38588 cdlemg12g 38590 cdlemg13a 38592 cdlemg15a 38596 cdlemg17e 38606 cdlemg18d 38622 cdlemg19a 38624 cdlemg20 38626 cdlemg22 38628 cdlemg28a 38634 cdlemg29 38646 cdlemg44a 38672 cdlemk34 38851 cdlemn11pre 39151 dihord10 39164 dihord2pre 39166 dihmeetlem17N 39264 |
Copyright terms: Public domain | W3C validator |