Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl123anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl123anc.7 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl123anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 515 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl123anc.7 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 4, 5, 6, 7, 8 | syl113anc 1384 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: dvfsumlem2 24924 noinfbnd2 33671 atbtwnexOLDN 37198 atbtwnex 37199 osumcllem7N 37713 lhpmcvr5N 37778 cdleme22f2 38098 cdlemefs32sn1aw 38165 cdlemg7aN 38376 cdlemg7N 38377 cdlemg8c 38380 cdlemg8 38382 cdlemg11aq 38389 cdlemg12b 38395 cdlemg12e 38398 cdlemg12g 38400 cdlemg13a 38402 cdlemg15a 38406 cdlemg17e 38416 cdlemg18d 38432 cdlemg19a 38434 cdlemg20 38436 cdlemg22 38438 cdlemg28a 38444 cdlemg29 38456 cdlemg44a 38482 cdlemk34 38661 cdlemn11pre 38961 dihord10 38974 dihord2pre 38976 dihmeetlem17N 39074 |
Copyright terms: Public domain | W3C validator |