![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl123anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl123anc.7 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
Ref | Expression |
---|---|
syl123anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl123anc.7 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
9 | 1, 4, 5, 6, 7, 8 | syl113anc 1382 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: dvfsumlem2 26087 dvfsumlem2OLD 26088 noinfbnd2 27794 atbtwnexOLDN 39404 atbtwnex 39405 osumcllem7N 39919 lhpmcvr5N 39984 cdleme22f2 40304 cdlemefs32sn1aw 40371 cdlemg7aN 40582 cdlemg7N 40583 cdlemg8c 40586 cdlemg8 40588 cdlemg11aq 40595 cdlemg12b 40601 cdlemg12e 40604 cdlemg12g 40606 cdlemg13a 40608 cdlemg15a 40612 cdlemg17e 40622 cdlemg18d 40638 cdlemg19a 40640 cdlemg20 40642 cdlemg22 40644 cdlemg28a 40650 cdlemg29 40662 cdlemg44a 40688 cdlemk34 40867 cdlemn11pre 41167 dihord10 41180 dihord2pre 41182 dihmeetlem17N 41280 |
Copyright terms: Public domain | W3C validator |