| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl123anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl123anc.7 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl123anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl123anc.7 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 4, 5, 6, 7, 8 | syl113anc 1384 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: dvfsumlem2 25933 dvfsumlem2OLD 25934 noinfbnd2 27643 atbtwnexOLDN 39441 atbtwnex 39442 osumcllem7N 39956 lhpmcvr5N 40021 cdleme22f2 40341 cdlemefs32sn1aw 40408 cdlemg7aN 40619 cdlemg7N 40620 cdlemg8c 40623 cdlemg8 40625 cdlemg11aq 40632 cdlemg12b 40638 cdlemg12e 40641 cdlemg12g 40643 cdlemg13a 40645 cdlemg15a 40649 cdlemg17e 40659 cdlemg18d 40675 cdlemg19a 40677 cdlemg20 40679 cdlemg22 40681 cdlemg28a 40687 cdlemg29 40699 cdlemg44a 40725 cdlemk34 40904 cdlemn11pre 41204 dihord10 41217 dihord2pre 41219 dihmeetlem17N 41317 |
| Copyright terms: Public domain | W3C validator |