MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1389
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1384 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dvfsumlem2  25961  dvfsumlem2OLD  25962  noinfbnd2  27671  atbtwnexOLDN  39492  atbtwnex  39493  osumcllem7N  40007  lhpmcvr5N  40072  cdleme22f2  40392  cdlemefs32sn1aw  40459  cdlemg7aN  40670  cdlemg7N  40671  cdlemg8c  40674  cdlemg8  40676  cdlemg11aq  40683  cdlemg12b  40689  cdlemg12e  40692  cdlemg12g  40694  cdlemg13a  40696  cdlemg15a  40700  cdlemg17e  40710  cdlemg18d  40726  cdlemg19a  40728  cdlemg20  40730  cdlemg22  40732  cdlemg28a  40738  cdlemg29  40750  cdlemg44a  40776  cdlemk34  40955  cdlemn11pre  41255  dihord10  41268  dihord2pre  41270  dihmeetlem17N  41368
  Copyright terms: Public domain W3C validator