MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1389
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1384 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dvfsumlem2  25963  dvfsumlem2OLD  25964  noinfbnd2  27673  atbtwnexOLDN  39569  atbtwnex  39570  osumcllem7N  40084  lhpmcvr5N  40149  cdleme22f2  40469  cdlemefs32sn1aw  40536  cdlemg7aN  40747  cdlemg7N  40748  cdlemg8c  40751  cdlemg8  40753  cdlemg11aq  40760  cdlemg12b  40766  cdlemg12e  40769  cdlemg12g  40771  cdlemg13a  40773  cdlemg15a  40777  cdlemg17e  40787  cdlemg18d  40803  cdlemg19a  40805  cdlemg20  40807  cdlemg22  40809  cdlemg28a  40815  cdlemg29  40827  cdlemg44a  40853  cdlemk34  41032  cdlemn11pre  41332  dihord10  41345  dihord2pre  41347  dihmeetlem17N  41445
  Copyright terms: Public domain W3C validator