| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl123anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl123anc.7 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) |
| Ref | Expression |
|---|---|
| syl123anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl123anc.7 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) | |
| 9 | 1, 4, 5, 6, 7, 8 | syl113anc 1384 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: dvfsumlem2 26067 dvfsumlem2OLD 26068 noinfbnd2 27776 atbtwnexOLDN 39449 atbtwnex 39450 osumcllem7N 39964 lhpmcvr5N 40029 cdleme22f2 40349 cdlemefs32sn1aw 40416 cdlemg7aN 40627 cdlemg7N 40628 cdlemg8c 40631 cdlemg8 40633 cdlemg11aq 40640 cdlemg12b 40646 cdlemg12e 40649 cdlemg12g 40651 cdlemg13a 40653 cdlemg15a 40657 cdlemg17e 40667 cdlemg18d 40683 cdlemg19a 40685 cdlemg20 40687 cdlemg22 40689 cdlemg28a 40695 cdlemg29 40707 cdlemg44a 40733 cdlemk34 40912 cdlemn11pre 41212 dihord10 41225 dihord2pre 41227 dihmeetlem17N 41325 |
| Copyright terms: Public domain | W3C validator |