MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl123anc Structured version   Visualization version   GIF version

Theorem syl123anc 1389
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl123anc.7 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl123anc (𝜑𝜎)

Proof of Theorem syl123anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . . 3 (𝜑𝜒)
3 syl3anc.3 . . 3 (𝜑𝜃)
42, 3jca 511 . 2 (𝜑 → (𝜒𝜃))
5 syl3Xanc.4 . 2 (𝜑𝜏)
6 syl23anc.5 . 2 (𝜑𝜂)
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl123anc.7 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ (𝜏𝜂𝜁)) → 𝜎)
91, 4, 5, 6, 7, 8syl113anc 1384 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dvfsumlem2  25933  dvfsumlem2OLD  25934  noinfbnd2  27643  atbtwnexOLDN  39441  atbtwnex  39442  osumcllem7N  39956  lhpmcvr5N  40021  cdleme22f2  40341  cdlemefs32sn1aw  40408  cdlemg7aN  40619  cdlemg7N  40620  cdlemg8c  40623  cdlemg8  40625  cdlemg11aq  40632  cdlemg12b  40638  cdlemg12e  40641  cdlemg12g  40643  cdlemg13a  40645  cdlemg15a  40649  cdlemg17e  40659  cdlemg18d  40675  cdlemg19a  40677  cdlemg20  40679  cdlemg22  40681  cdlemg28a  40687  cdlemg29  40699  cdlemg44a  40725  cdlemk34  40904  cdlemn11pre  41204  dihord10  41217  dihord2pre  41219  dihmeetlem17N  41317
  Copyright terms: Public domain W3C validator