Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
2 | | simp21r 1292 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΊ β π) |
3 | | simp22 1208 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β π β π) |
4 | | simp23 1209 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) β π) |
5 | | simp31 1210 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π
βπΊ) β€ (π β¨ π)) |
6 | | simp33 1212 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π))) |
7 | | cdlemg12.l |
. . . . . . 7
β’ β€ =
(leβπΎ) |
8 | | cdlemg12.j |
. . . . . . 7
β’ β¨ =
(joinβπΎ) |
9 | | cdlemg12.m |
. . . . . . 7
β’ β§ =
(meetβπΎ) |
10 | | cdlemg12.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
11 | | cdlemg12.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
12 | | cdlemg12.t |
. . . . . . 7
β’ π = ((LTrnβπΎ)βπ) |
13 | | cdlemg12b.r |
. . . . . . 7
β’ π
= ((trLβπΎ)βπ) |
14 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17b 39154 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) = π) |
15 | 1, 2, 3, 4, 5, 6, 14 | syl123anc 1388 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) = π) |
16 | 15 | fveq2d 6851 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
17 | 16 | oveq2d 7378 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β¨ (πΉβ(πΊβπ))) = (π β¨ (πΉβπ))) |
18 | | simp21l 1291 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β πΉ β π) |
19 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17bq 39165 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) = π) |
20 | 1, 18, 2, 3, 4, 5, 6, 19 | syl133anc 1394 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβπ) = π) |
21 | 20 | fveq2d 6851 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
22 | 21 | oveq2d 7378 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β¨ (πΉβ(πΊβπ))) = (π β¨ (πΉβπ))) |
23 | 17, 22 | oveq12d 7380 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ)))) = ((π β¨ (πΉβπ)) β§ (π β¨ (πΉβπ)))) |
24 | | simp11 1204 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΎ β HL β§ π β π»)) |
25 | | simp12 1205 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
26 | | simp13 1206 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (π β π΄ β§ Β¬ π β€ π)) |
27 | | simp32 1211 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π)) |
28 | 7, 8, 9, 10, 11, 12 | cdlemg11aq 39130 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΉβ(πΊβπ)) β π) |
29 | 24, 25, 26, 18, 2, 27, 28 | syl123anc 1388 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) β π) |
30 | 21, 29 | eqnetrrd 3013 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβπ) β π) |
31 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17irq 39167 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π
βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
32 | 1, 18, 2, 3, 4, 5, 6, 31 | syl133anc 1394 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΉβ(πΊβπ)) = (πΉβπ)) |
33 | 16, 32 | oveq12d 7380 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) = ((πΉβπ) β¨ (πΉβπ))) |
34 | 33, 27 | eqnetrrd 3013 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((πΉβπ) β¨ (πΉβπ)) β (π β¨ π)) |
35 | | eqid 2737 |
. . . 4
β’ ((π β¨ π) β§ π) = ((π β¨ π) β§ π) |
36 | 7, 8, 9, 10, 11, 12, 13, 35 | cdlemg18c 39172 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ πΉ β π) β§ (π β π β§ (πΉβπ) β π β§ ((πΉβπ) β¨ (πΉβπ)) β (π β¨ π))) β ((π β¨ (πΉβπ)) β§ (π β¨ (πΉβπ))) β π΄) |
37 | 24, 25, 26, 18, 3, 30, 34, 36 | syl133anc 1394 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβπ)) β§ (π β¨ (πΉβπ))) β π΄) |
38 | 23, 37 | eqeltrd 2838 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ)))) β π΄) |