Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18d Structured version   Visualization version   GIF version

Theorem cdlemg18d 37348
Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg18d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ∈ 𝐴)
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑇(𝑟)   𝐻(𝑟)   𝐾(𝑟)   (𝑟)

Proof of Theorem cdlemg18d
StepHypRef Expression
1 simp1 1129 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp21r 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
3 simp22 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
4 simp23 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) ≠ 𝑃)
5 simp31 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐺) (𝑃 𝑄))
6 simp33 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
7 cdlemg12.l . . . . . . 7 = (le‘𝐾)
8 cdlemg12.j . . . . . . 7 = (join‘𝐾)
9 cdlemg12.m . . . . . . 7 = (meet‘𝐾)
10 cdlemg12.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
12 cdlemg12.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
13 cdlemg12b.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
147, 8, 9, 10, 11, 12, 13cdlemg17b 37329 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) = 𝑄)
151, 2, 3, 4, 5, 6, 14syl123anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) = 𝑄)
1615fveq2d 6542 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑃)) = (𝐹𝑄))
1716oveq2d 7032 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 (𝐹‘(𝐺𝑃))) = (𝑃 (𝐹𝑄)))
18 simp21l 1283 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
197, 8, 9, 10, 11, 12, 13cdlemg17bq 37340 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑄) = 𝑃)
201, 18, 2, 3, 4, 5, 6, 19syl133anc 1386 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑄) = 𝑃)
2120fveq2d 6542 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑄)) = (𝐹𝑃))
2221oveq2d 7032 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄 (𝐹‘(𝐺𝑄))) = (𝑄 (𝐹𝑃)))
2317, 22oveq12d 7034 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) = ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))))
24 simp11 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simp12 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
26 simp13 1198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
27 simp32 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
287, 8, 9, 10, 11, 12cdlemg11aq 37305 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → (𝐹‘(𝐺𝑄)) ≠ 𝑄)
2924, 25, 26, 18, 2, 27, 28syl123anc 1380 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑄)) ≠ 𝑄)
3021, 29eqnetrrd 3052 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑃) ≠ 𝑄)
317, 8, 9, 10, 11, 12, 13cdlemg17irq 37342 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((𝐺𝑃) ≠ 𝑃 ∧ (𝑅𝐺) (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑄)) = (𝐹𝑃))
321, 18, 2, 3, 4, 5, 6, 31syl133anc 1386 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑄)) = (𝐹𝑃))
3316, 32oveq12d 7034 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = ((𝐹𝑄) (𝐹𝑃)))
3433, 27eqnetrrd 3052 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))
35 eqid 2795 . . . 4 ((𝑃 𝑄) 𝑊) = ((𝑃 𝑄) 𝑊)
367, 8, 9, 10, 11, 12, 13, 35cdlemg18c 37347 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))) ∈ 𝐴)
3724, 25, 26, 18, 3, 30, 34, 36syl133anc 1386 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))) ∈ 𝐴)
3823, 37eqeltrd 2883 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wrex 3106   class class class wbr 4962  cfv 6225  (class class class)co 7016  lecple 16401  joincjn 17383  meetcmee 17384  Atomscatm 35930  HLchlt 36017  LHypclh 36651  LTrncltrn 36768  trLctrl 36825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-riotaBAD 35620
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-undef 7790  df-map 8258  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-lplanes 36166  df-lvols 36167  df-lines 36168  df-psubsp 36170  df-pmap 36171  df-padd 36463  df-lhyp 36655  df-laut 36656  df-ldil 36771  df-ltrn 36772  df-trl 36826
This theorem is referenced by:  cdlemg18  37349  cdlemg19a  37350
  Copyright terms: Public domain W3C validator