Proof of Theorem cdlemg18d
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
2 | | simp21r 1293 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐺 ∈ 𝑇) |
3 | | simp22 1209 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝑃 ≠ 𝑄) |
4 | | simp23 1210 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑃) ≠ 𝑃) |
5 | | simp31 1211 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) |
6 | | simp33 1213 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) |
7 | | cdlemg12.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
8 | | cdlemg12.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
9 | | cdlemg12.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
10 | | cdlemg12.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
11 | | cdlemg12.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
12 | | cdlemg12.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
13 | | cdlemg12b.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
14 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17b 38413 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑃) = 𝑄) |
15 | 1, 2, 3, 4, 5, 6, 14 | syl123anc 1389 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑃) = 𝑄) |
16 | 15 | fveq2d 6721 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑃)) = (𝐹‘𝑄)) |
17 | 16 | oveq2d 7229 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑃 ∨ (𝐹‘(𝐺‘𝑃))) = (𝑃 ∨ (𝐹‘𝑄))) |
18 | | simp21l 1292 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐹 ∈ 𝑇) |
19 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17bq 38424 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑄) = 𝑃) |
20 | 1, 18, 2, 3, 4, 5, 6, 19 | syl133anc 1395 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐺‘𝑄) = 𝑃) |
21 | 20 | fveq2d 6721 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑄)) = (𝐹‘𝑃)) |
22 | 21 | oveq2d 7229 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑄 ∨ (𝐹‘𝑃))) |
23 | 17, 22 | oveq12d 7231 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) = ((𝑃 ∨ (𝐹‘𝑄)) ∧ (𝑄 ∨ (𝐹‘𝑃)))) |
24 | | simp11 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
25 | | simp12 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
26 | | simp13 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
27 | | simp32 1212 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) |
28 | 7, 8, 9, 10, 11, 12 | cdlemg11aq 38389 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → (𝐹‘(𝐺‘𝑄)) ≠ 𝑄) |
29 | 24, 25, 26, 18, 2, 27, 28 | syl123anc 1389 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑄)) ≠ 𝑄) |
30 | 21, 29 | eqnetrrd 3009 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘𝑃) ≠ 𝑄) |
31 | 7, 8, 9, 10, 11, 12, 13 | cdlemg17irq 38426 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄) ∧ ((𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑄)) = (𝐹‘𝑃)) |
32 | 1, 18, 2, 3, 4, 5, 6, 31 | syl133anc 1395 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝐹‘(𝐺‘𝑄)) = (𝐹‘𝑃)) |
33 | 16, 32 | oveq12d 7231 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘𝑄) ∨ (𝐹‘𝑃))) |
34 | 33, 27 | eqnetrrd 3009 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄)) |
35 | | eqid 2737 |
. . . 4
⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
36 | 7, 8, 9, 10, 11, 12, 13, 35 | cdlemg18c 38431 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ≠ 𝑄 ∧ (𝐹‘𝑃) ≠ 𝑄 ∧ ((𝐹‘𝑄) ∨ (𝐹‘𝑃)) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘𝑄)) ∧ (𝑄 ∨ (𝐹‘𝑃))) ∈ 𝐴) |
37 | 24, 25, 26, 18, 3, 30, 34, 36 | syl133anc 1395 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘𝑄)) ∧ (𝑄 ∨ (𝐹‘𝑃))) ∈ 𝐴) |
38 | 23, 37 | eqeltrd 2838 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ≠ 𝑄 ∧ (𝐺‘𝑃) ≠ 𝑃) ∧ ((𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ (𝑄 ∨ (𝐹‘(𝐺‘𝑄)))) ∈ 𝐴) |