Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs32sn1aw Structured version   Visualization version   GIF version

Theorem cdlemefs32sn1aw 40459
Description: Show that 𝑅 / 𝑠𝑁 is an atom not under 𝑊 when 𝑅 (𝑃 𝑄). (Contributed by NM, 24-Mar-2013.)
Hypotheses
Ref Expression
cdlemefs32.b 𝐵 = (Base‘𝐾)
cdlemefs32.l = (le‘𝐾)
cdlemefs32.j = (join‘𝐾)
cdlemefs32.m = (meet‘𝐾)
cdlemefs32.a 𝐴 = (Atoms‘𝐾)
cdlemefs32.h 𝐻 = (LHyp‘𝐾)
cdlemefs32.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemefs32.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs32.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemefs32.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
cdlemefs32.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdlemefs32a1.y 𝑌 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
cdlemefs32a1.z 𝑍 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
Assertion
Ref Expression
cdlemefs32sn1aw ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊))
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐸   𝐻,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝐾,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   ,𝑠,𝑡,𝑦   𝑃,𝑠,𝑡,𝑦   𝑄,𝑠,𝑡,𝑦   𝑅,𝑠,𝑡,𝑦   𝑡,𝑈,𝑦   𝑊,𝑠,𝑡,𝑦   𝑦,𝑌   𝐷,𝑠
Allowed substitution hints:   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑡)   𝑈(𝑠)   𝐸(𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑌(𝑡,𝑠)   𝑍(𝑦,𝑡,𝑠)

Proof of Theorem cdlemefs32sn1aw
StepHypRef Expression
1 cdlemefs32.b . . . 4 𝐵 = (Base‘𝐾)
21fvexi 6836 . . 3 𝐵 ∈ V
3 nfv 1915 . . . 4 𝑡(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄))
4 cdlemefs32a1.z . . . . . . . 8 𝑍 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
5 nfra1 3256 . . . . . . . . 9 𝑡𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)
6 nfcv 2894 . . . . . . . . 9 𝑡𝐵
75, 6nfriota 7315 . . . . . . . 8 𝑡(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌))
84, 7nfcxfr 2892 . . . . . . 7 𝑡𝑍
98nfel1 2911 . . . . . 6 𝑡 𝑍𝐴
10 nfcv 2894 . . . . . . . 8 𝑡
11 nfcv 2894 . . . . . . . 8 𝑡𝑊
128, 10, 11nfbr 5138 . . . . . . 7 𝑡 𝑍 𝑊
1312nfn 1858 . . . . . 6 𝑡 ¬ 𝑍 𝑊
149, 13nfan 1900 . . . . 5 𝑡(𝑍𝐴 ∧ ¬ 𝑍 𝑊)
1514a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → Ⅎ𝑡(𝑍𝐴 ∧ ¬ 𝑍 𝑊))
164a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑍 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑌)))
17 eleq1 2819 . . . . . 6 (𝑌 = 𝑍 → (𝑌𝐴𝑍𝐴))
18 breq1 5094 . . . . . . 7 (𝑌 = 𝑍 → (𝑌 𝑊𝑍 𝑊))
1918notbid 318 . . . . . 6 (𝑌 = 𝑍 → (¬ 𝑌 𝑊 ↔ ¬ 𝑍 𝑊))
2017, 19anbi12d 632 . . . . 5 (𝑌 = 𝑍 → ((𝑌𝐴 ∧ ¬ 𝑌 𝑊) ↔ (𝑍𝐴 ∧ ¬ 𝑍 𝑊)))
2120adantl 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝑌 = 𝑍) → ((𝑌𝐴 ∧ ¬ 𝑌 𝑊) ↔ (𝑍𝐴 ∧ ¬ 𝑍 𝑊)))
22 simpl1 1192 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
23 simpl2r 1228 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
24 simprl 770 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑡𝐴)
25 simprrl 780 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑡 𝑊)
2624, 25jca 511 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
27 simpl2l 1227 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑃𝑄)
28 simpl3 1194 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → 𝑅 (𝑃 𝑄))
29 simprrr 781 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
30 cdlemefs32.l . . . . . . . 8 = (le‘𝐾)
31 cdlemefs32.j . . . . . . . 8 = (join‘𝐾)
32 cdlemefs32.m . . . . . . . 8 = (meet‘𝐾)
33 cdlemefs32.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
34 cdlemefs32.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
35 cdlemefs32.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
36 cdlemefs32.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
37 cdlemefs32a1.y . . . . . . . 8 𝑌 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
3830, 31, 32, 33, 34, 35, 36, 37cdleme7ga 40293 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄))) → 𝑌𝐴)
3930, 31, 32, 33, 34, 35, 36, 37cdleme7 40294 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄))) → ¬ 𝑌 𝑊)
4038, 39jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄))) → (𝑌𝐴 ∧ ¬ 𝑌 𝑊))
4122, 23, 26, 27, 28, 29, 40syl123anc 1389 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))) → (𝑌𝐴 ∧ ¬ 𝑌 𝑊))
4241ex 412 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑡𝐴 ∧ (¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))) → (𝑌𝐴 ∧ ¬ 𝑌 𝑊)))
43 simp1 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
44 simp2rl 1243 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑅𝐴)
45 simp2rr 1244 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 𝑊)
46 simp2l 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
47 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑅 (𝑃 𝑄))
481, 30, 31, 32, 33, 34, 35, 36, 37, 4cdleme25cl 40402 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝑍𝐵)
4943, 44, 45, 46, 47, 48syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑍𝐵)
50 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
52 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5330, 31, 33, 34cdlemb2 40086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑡𝐴𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))
5450, 51, 52, 46, 53syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ∃𝑡𝐴𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)))
553, 15, 16, 21, 42, 49, 54riotasv3d 39005 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) ∧ 𝐵 ∈ V) → (𝑍𝐴 ∧ ¬ 𝑍 𝑊))
562, 55mpan2 691 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑍𝐴 ∧ ¬ 𝑍 𝑊))
57 cdlemefs32.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
58 cdlemefs32.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
59 cdlemefs32.n . . . . . 6 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
6057, 58, 59, 37, 4cdleme31sn1c 40433 . . . . 5 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑍)
6144, 47, 60syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑍)
6261eleq1d 2816 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 / 𝑠𝑁𝐴𝑍𝐴))
6361breq1d 5101 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 / 𝑠𝑁 𝑊𝑍 𝑊))
6463notbid 318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (¬ 𝑅 / 𝑠𝑁 𝑊 ↔ ¬ 𝑍 𝑊))
6562, 64anbi12d 632 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → ((𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊) ↔ (𝑍𝐴 ∧ ¬ 𝑍 𝑊)))
6656, 65mpbird 257 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝑅 / 𝑠𝑁𝐴 ∧ ¬ 𝑅 / 𝑠𝑁 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  csb 3850  ifcif 4475   class class class wbr 5091  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39308  HLchlt 39395  LHypclh 40029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033
This theorem is referenced by:  cdlemefs32snb  40460  cdleme32sn1awN  40477  cdleme32snaw  40480
  Copyright terms: Public domain W3C validator