Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem17N Structured version   Visualization version   GIF version

Theorem dihmeetlem17N 40848
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem14.b 𝐡 = (Baseβ€˜πΎ)
dihmeetlem14.l ≀ = (leβ€˜πΎ)
dihmeetlem14.h 𝐻 = (LHypβ€˜πΎ)
dihmeetlem14.j ∨ = (joinβ€˜πΎ)
dihmeetlem14.m ∧ = (meetβ€˜πΎ)
dihmeetlem14.a 𝐴 = (Atomsβ€˜πΎ)
dihmeetlem14.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihmeetlem14.s βŠ• = (LSSumβ€˜π‘ˆ)
dihmeetlem14.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihmeetlem17.o 0 = (0.β€˜πΎ)
Assertion
Ref Expression
dihmeetlem17N ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (π‘Œ ∧ 𝑝) = 0 )

Proof of Theorem dihmeetlem17N
StepHypRef Expression
1 simpl1l 1221 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
21hllatd 38888 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝐾 ∈ Lat)
3 simpl3l 1225 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝑝 ∈ 𝐴)
4 dihmeetlem14.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
5 dihmeetlem14.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38813 . . . 4 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
73, 6syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝑝 ∈ 𝐡)
8 simpr1 1191 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ π‘Œ ∈ 𝐡)
9 dihmeetlem14.m . . . 4 ∧ = (meetβ€˜πΎ)
104, 9latmcom 18449 . . 3 ((𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑝 ∧ π‘Œ) = (π‘Œ ∧ 𝑝))
112, 7, 8, 10syl3anc 1368 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝑝 ∧ π‘Œ) = (π‘Œ ∧ 𝑝))
12 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13 simpl2 1189 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
14 simpl3 1190 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š))
15 simpr2 1192 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝑋 ∧ π‘Œ) ≀ π‘Š)
16 simpr3 1193 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝑝 ≀ 𝑋)
17 dihmeetlem14.l . . . . 5 ≀ = (leβ€˜πΎ)
18 dihmeetlem14.j . . . . 5 ∨ = (joinβ€˜πΎ)
19 dihmeetlem14.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
204, 17, 18, 9, 5, 19lhpmcvr4N 39551 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ Β¬ 𝑝 ≀ π‘Œ)
2112, 13, 14, 8, 15, 16, 20syl123anc 1384 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ Β¬ 𝑝 ≀ π‘Œ)
22 hlatl 38884 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
231, 22syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ 𝐾 ∈ AtLat)
24 dihmeetlem17.o . . . . 5 0 = (0.β€˜πΎ)
254, 17, 9, 24, 5atnle 38841 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑝 ∈ 𝐴 ∧ π‘Œ ∈ 𝐡) β†’ (Β¬ 𝑝 ≀ π‘Œ ↔ (𝑝 ∧ π‘Œ) = 0 ))
2623, 3, 8, 25syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (Β¬ 𝑝 ≀ π‘Œ ↔ (𝑝 ∧ π‘Œ) = 0 ))
2721, 26mpbid 231 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (𝑝 ∧ π‘Œ) = 0 )
2811, 27eqtr3d 2767 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š)) ∧ (π‘Œ ∈ 𝐡 ∧ (𝑋 ∧ π‘Œ) ≀ π‘Š ∧ 𝑝 ≀ 𝑋)) β†’ (π‘Œ ∧ 𝑝) = 0 )
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  meetcmee 18298  0.cp0 18409  Latclat 18417  LSSumclsm 19588  Atomscatm 38787  AtLatcal 38788  HLchlt 38874  LHypclh 39509  DVecHcdvh 40603  DIsoHcdih 40753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-lat 18418  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875  df-lhyp 39513
This theorem is referenced by:  dihmeetlem18N  40849
  Copyright terms: Public domain W3C validator