Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem17N Structured version   Visualization version   GIF version

Theorem dihmeetlem17N 39074
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem14.b 𝐵 = (Base‘𝐾)
dihmeetlem14.l = (le‘𝐾)
dihmeetlem14.h 𝐻 = (LHyp‘𝐾)
dihmeetlem14.j = (join‘𝐾)
dihmeetlem14.m = (meet‘𝐾)
dihmeetlem14.a 𝐴 = (Atoms‘𝐾)
dihmeetlem14.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem14.s = (LSSum‘𝑈)
dihmeetlem14.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem17.o 0 = (0.‘𝐾)
Assertion
Ref Expression
dihmeetlem17N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑌 𝑝) = 0 )

Proof of Theorem dihmeetlem17N
StepHypRef Expression
1 simpl1l 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ HL)
21hllatd 37115 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ Lat)
3 simpl3l 1230 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝𝐴)
4 dihmeetlem14.b . . . . 5 𝐵 = (Base‘𝐾)
5 dihmeetlem14.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 37040 . . . 4 (𝑝𝐴𝑝𝐵)
73, 6syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝𝐵)
8 simpr1 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑌𝐵)
9 dihmeetlem14.m . . . 4 = (meet‘𝐾)
104, 9latmcom 17969 . . 3 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑌𝐵) → (𝑝 𝑌) = (𝑌 𝑝))
112, 7, 8, 10syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝 𝑌) = (𝑌 𝑝))
12 simpl1 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2 1194 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
14 simpl3 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
15 simpr2 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑋 𝑌) 𝑊)
16 simpr3 1198 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝 𝑋)
17 dihmeetlem14.l . . . . 5 = (le‘𝐾)
18 dihmeetlem14.j . . . . 5 = (join‘𝐾)
19 dihmeetlem14.h . . . . 5 𝐻 = (LHyp‘𝐾)
204, 17, 18, 9, 5, 19lhpmcvr4N 37777 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
2112, 13, 14, 8, 15, 16, 20syl123anc 1389 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
22 hlatl 37111 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
231, 22syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ AtLat)
24 dihmeetlem17.o . . . . 5 0 = (0.‘𝐾)
254, 17, 9, 24, 5atnle 37068 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑝𝐴𝑌𝐵) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = 0 ))
2623, 3, 8, 25syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = 0 ))
2721, 26mpbid 235 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝 𝑌) = 0 )
2811, 27eqtr3d 2779 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑌 𝑝) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  joincjn 17818  meetcmee 17819  0.cp0 17929  Latclat 17937  LSSumclsm 19023  Atomscatm 37014  AtLatcal 37015  HLchlt 37101  LHypclh 37735  DVecHcdvh 38829  DIsoHcdih 38979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-lat 17938  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lhyp 37739
This theorem is referenced by:  dihmeetlem18N  39075
  Copyright terms: Public domain W3C validator