Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem17N Structured version   Visualization version   GIF version

Theorem dihmeetlem17N 41280
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem14.b 𝐵 = (Base‘𝐾)
dihmeetlem14.l = (le‘𝐾)
dihmeetlem14.h 𝐻 = (LHyp‘𝐾)
dihmeetlem14.j = (join‘𝐾)
dihmeetlem14.m = (meet‘𝐾)
dihmeetlem14.a 𝐴 = (Atoms‘𝐾)
dihmeetlem14.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem14.s = (LSSum‘𝑈)
dihmeetlem14.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem17.o 0 = (0.‘𝐾)
Assertion
Ref Expression
dihmeetlem17N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑌 𝑝) = 0 )

Proof of Theorem dihmeetlem17N
StepHypRef Expression
1 simpl1l 1224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ HL)
21hllatd 39320 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ Lat)
3 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝𝐴)
4 dihmeetlem14.b . . . . 5 𝐵 = (Base‘𝐾)
5 dihmeetlem14.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39245 . . . 4 (𝑝𝐴𝑝𝐵)
73, 6syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝𝐵)
8 simpr1 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑌𝐵)
9 dihmeetlem14.m . . . 4 = (meet‘𝐾)
104, 9latmcom 18533 . . 3 ((𝐾 ∈ Lat ∧ 𝑝𝐵𝑌𝐵) → (𝑝 𝑌) = (𝑌 𝑝))
112, 7, 8, 10syl3anc 1371 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝 𝑌) = (𝑌 𝑝))
12 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simpl2 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
14 simpl3 1193 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
15 simpr2 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑋 𝑌) 𝑊)
16 simpr3 1196 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝑝 𝑋)
17 dihmeetlem14.l . . . . 5 = (le‘𝐾)
18 dihmeetlem14.j . . . . 5 = (join‘𝐾)
19 dihmeetlem14.h . . . . 5 𝐻 = (LHyp‘𝐾)
204, 17, 18, 9, 5, 19lhpmcvr4N 39983 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
2112, 13, 14, 8, 15, 16, 20syl123anc 1387 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
22 hlatl 39316 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
231, 22syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → 𝐾 ∈ AtLat)
24 dihmeetlem17.o . . . . 5 0 = (0.‘𝐾)
254, 17, 9, 24, 5atnle 39273 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑝𝐴𝑌𝐵) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = 0 ))
2623, 3, 8, 25syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (¬ 𝑝 𝑌 ↔ (𝑝 𝑌) = 0 ))
2721, 26mpbid 232 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑝 𝑌) = 0 )
2811, 27eqtr3d 2782 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑌 𝑝) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  LSSumclsm 19676  Atomscatm 39219  AtLatcal 39220  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  DIsoHcdih 41185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945
This theorem is referenced by:  dihmeetlem18N  41281
  Copyright terms: Public domain W3C validator