Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊))) |
2 | | simpl2l 1225 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑋 ∈ 𝐵) |
3 | | simpl2r 1226 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑌 ∈ 𝐵) |
4 | | simpl3 1192 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
5 | | simprl 768 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑓 ∈ 𝑇) |
6 | | simprr 770 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) |
7 | | dihjust.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
8 | | dihjust.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
9 | | dihjust.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
10 | | dihjust.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
11 | | dihjust.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | dihjust.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
13 | | dihjust.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
14 | | dihjust.J |
. . . . . . 7
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
15 | | dihjust.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
16 | | dihjust.s |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝑈) |
17 | | dihord2c.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
18 | | dihord2c.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
19 | | dihord2c.o |
. . . . . . 7
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
20 | | dihord2.p |
. . . . . . 7
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
21 | | dihord2.e |
. . . . . . 7
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
22 | | dihord2.d |
. . . . . . 7
⊢ + =
(+g‘𝑈) |
23 | | dihord2.g |
. . . . . . 7
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
24 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | dihord11c 39238 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧)) |
25 | 1, 2, 3, 4, 5, 6, 24 | syl123anc 1386 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧)) |
26 | | simpl11 1247 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | | simpl13 1249 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) |
28 | 8, 11, 12, 20, 17, 21, 14, 23 | dicelval3 39194 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (𝑦 ∈ (𝐽‘𝑁) ↔ ∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉)) |
29 | 26, 27, 28 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑦 ∈ (𝐽‘𝑁) ↔ ∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉)) |
30 | | simp11l 1283 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ HL) |
31 | 30 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) |
32 | 31 | hllatd 37378 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
33 | | simp11r 1284 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐻) |
34 | 33 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) |
35 | 7, 12 | lhpbase 38012 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
37 | 7, 10 | latmcl 18158 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
38 | 32, 3, 36, 37 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
39 | 7, 8, 10 | latmle2 18183 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
40 | 32, 3, 36, 39 | syl3anc 1370 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
41 | 7, 8, 12, 17, 18, 19, 13 | dibelval3 39161 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊)) ↔ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
42 | 26, 38, 40, 41 | syl12anc 834 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊)) ↔ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
43 | 29, 42 | anbi12d 631 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑦 ∈ (𝐽‘𝑁) ∧ 𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))) ↔ (∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))))) |
44 | | reeanv 3294 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐸 ∃𝑔 ∈ 𝑇 (𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) ↔ (∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
45 | | simpll1 1211 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊))) |
46 | | simplr 766 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) |
47 | | simpr 485 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) |
48 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | dihord10 39237 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
49 | 45, 46, 47, 48 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
50 | 49 | 3exp2 1353 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
51 | | oveq12 7284 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (𝑦 + 𝑧) = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉)) |
52 | 51 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) ↔ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) |
53 | 52 | imbi1d 342 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → ((〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) ↔ (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
54 | 53 | imbi2d 341 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) ↔ ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
55 | 54 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
56 | 55 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
57 | 56 | impr 455 |
. . . . . . . . . . 11
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
58 | 57 | com12 32 |
. . . . . . . . . 10
⊢ (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
59 | 50, 58 | syl6 35 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
60 | 59 | rexlimdvv 3222 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (∃𝑠 ∈ 𝐸 ∃𝑔 ∈ 𝑇 (𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
61 | 44, 60 | syl5bir 242 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
62 | 43, 61 | sylbid 239 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑦 ∈ (𝐽‘𝑁) ∧ 𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
63 | 62 | rexlimdvv 3222 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) |
64 | 25, 63 | mpd 15 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
65 | 64 | exp32 421 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑓 ∈ 𝑇 → ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
66 | 65 | ralrimiv 3102 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) |
67 | | simp11 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
68 | 30 | hllatd 37378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ Lat) |
69 | | simp2l 1198 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑋 ∈ 𝐵) |
70 | 33, 35 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐵) |
71 | 7, 10 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
72 | 68, 69, 70, 71 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
73 | 7, 8, 10 | latmle2 18183 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
74 | 68, 69, 70, 73 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
75 | | simp2r 1199 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑌 ∈ 𝐵) |
76 | 68, 75, 70, 37 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
77 | 68, 75, 70, 39 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
78 | 7, 8, 11, 12, 17, 18 | trlord 38583 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) ↔ ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
79 | 67, 72, 74, 76, 77, 78 | syl122anc 1378 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) ↔ ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
80 | 66, 79 | mpbird 256 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |