| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊))) |
| 2 | | simpl2l 1227 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑋 ∈ 𝐵) |
| 3 | | simpl2r 1228 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑌 ∈ 𝐵) |
| 4 | | simpl3 1194 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
| 5 | | simprl 770 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑓 ∈ 𝑇) |
| 6 | | simprr 772 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) |
| 7 | | dihjust.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | dihjust.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 9 | | dihjust.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
| 10 | | dihjust.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
| 11 | | dihjust.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | | dihjust.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 13 | | dihjust.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| 14 | | dihjust.J |
. . . . . . 7
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
| 15 | | dihjust.u |
. . . . . . 7
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 16 | | dihjust.s |
. . . . . . 7
⊢ ⊕ =
(LSSum‘𝑈) |
| 17 | | dihord2c.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 18 | | dihord2c.r |
. . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 19 | | dihord2c.o |
. . . . . . 7
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 20 | | dihord2.p |
. . . . . . 7
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 21 | | dihord2.e |
. . . . . . 7
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 22 | | dihord2.d |
. . . . . . 7
⊢ + =
(+g‘𝑈) |
| 23 | | dihord2.g |
. . . . . . 7
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
| 24 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | dihord11c 41243 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))) ∧ 𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧)) |
| 25 | 1, 2, 3, 4, 5, 6, 24 | syl123anc 1389 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧)) |
| 26 | | simpl11 1249 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 27 | | simpl13 1251 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) |
| 28 | 8, 11, 12, 20, 17, 21, 14, 23 | dicelval3 41199 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) → (𝑦 ∈ (𝐽‘𝑁) ↔ ∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 29 | 26, 27, 28 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑦 ∈ (𝐽‘𝑁) ↔ ∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 30 | | simp11l 1285 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ HL) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ HL) |
| 32 | 31 | hllatd 39382 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝐾 ∈ Lat) |
| 33 | | simp11r 1286 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐻) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐻) |
| 35 | 7, 12 | lhpbase 40017 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → 𝑊 ∈ 𝐵) |
| 37 | 7, 10 | latmcl 18450 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 38 | 32, 3, 36, 37 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 39 | 7, 8, 10 | latmle2 18475 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
| 40 | 32, 3, 36, 39 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
| 41 | 7, 8, 12, 17, 18, 19, 13 | dibelval3 41166 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊)) ↔ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
| 42 | 26, 38, 40, 41 | syl12anc 836 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊)) ↔ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
| 43 | 29, 42 | anbi12d 632 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑦 ∈ (𝐽‘𝑁) ∧ 𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))) ↔ (∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))))) |
| 44 | | reeanv 3213 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐸 ∃𝑔 ∈ 𝑇 (𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) ↔ (∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊)))) |
| 45 | | simpll1 1213 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊))) |
| 46 | | simplr 768 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) |
| 47 | | simpr 484 |
. . . . . . . . . . . 12
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) |
| 48 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | dihord10 41242 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
| 49 | 45, 46, 47, 48 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
((((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) ∧ ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
| 50 | 49 | 3exp2 1355 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
| 51 | | oveq12 7414 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (𝑦 + 𝑧) = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉)) |
| 52 | 51 | eqeq2d 2746 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) ↔ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) |
| 53 | 52 | imbi1d 341 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → ((〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) ↔ (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 54 | 53 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) ↔ ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
| 55 | 54 | biimprd 248 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
| 56 | 55 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑧 = 〈𝑔, 𝑂〉) → ((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
| 57 | 56 | impr 454 |
. . . . . . . . . . 11
⊢ ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 58 | 57 | com12 32 |
. . . . . . . . . 10
⊢ (((𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊) → (〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) → ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 59 | 50, 58 | syl6 35 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))))) |
| 60 | 59 | rexlimdvv 3197 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (∃𝑠 ∈ 𝐸 ∃𝑔 ∈ 𝑇 (𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 61 | 44, 60 | biimtrrid 243 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((∃𝑠 ∈ 𝐸 𝑦 = 〈(𝑠‘𝐺), 𝑠〉 ∧ ∃𝑔 ∈ 𝑇 (𝑧 = 〈𝑔, 𝑂〉 ∧ (𝑅‘𝑔) ≤ (𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 62 | 43, 61 | sylbid 240 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → ((𝑦 ∈ (𝐽‘𝑁) ∧ 𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))) → (〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 63 | 62 | rexlimdvv 3197 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (∃𝑦 ∈ (𝐽‘𝑁)∃𝑧 ∈ (𝐼‘(𝑌 ∧ 𝑊))〈𝑓, 𝑂〉 = (𝑦 + 𝑧) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) |
| 64 | 25, 63 | mpd 15 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) ∧ (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊))) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)) |
| 65 | 64 | exp32 420 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑓 ∈ 𝑇 → ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 66 | 65 | ralrimiv 3131 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊))) |
| 67 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 68 | 30 | hllatd 39382 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ Lat) |
| 69 | | simp2l 1200 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑋 ∈ 𝐵) |
| 70 | 33, 35 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐵) |
| 71 | 7, 10 | latmcl 18450 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 72 | 68, 69, 70, 71 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 73 | 7, 8, 10 | latmle2 18475 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 74 | 68, 69, 70, 73 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 75 | | simp2r 1201 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑌 ∈ 𝐵) |
| 76 | 68, 75, 70, 37 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
| 77 | 68, 75, 70, 39 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
| 78 | 7, 8, 11, 12, 17, 18 | trlord 40588 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊) ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) ↔ ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 79 | 67, 72, 74, 76, 77, 78 | syl122anc 1381 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → ((𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊) ↔ ∀𝑓 ∈ 𝑇 ((𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊) → (𝑅‘𝑓) ≤ (𝑌 ∧ 𝑊)))) |
| 80 | 66, 79 | mpbird 257 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |