Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7N Structured version   Visualization version   GIF version

Theorem cdlemg7N 40620
Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg7.b 𝐵 = (Base‘𝐾)
cdlemg7.l = (le‘𝐾)
cdlemg7.a 𝐴 = (Atoms‘𝐾)
cdlemg7.h 𝐻 = (LHyp‘𝐾)
cdlemg7.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg7N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)

Proof of Theorem cdlemg7N
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl31 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝐹𝑇)
3 simpl32 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝐺𝑇)
4 simpl2r 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝑋𝐵)
5 cdlemg7.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdlemg7.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 cdlemg7.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7ltrncl 40119 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
91, 3, 4, 8syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) ∈ 𝐵)
10 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝑋 𝑊)
11 cdlemg7.l . . . . . . 7 = (le‘𝐾)
125, 11, 6, 7ltrnval1 40128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐺𝑋) = 𝑋)
131, 3, 4, 10, 12syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) = 𝑋)
1413, 10eqbrtrd 5129 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) 𝑊)
155, 11, 6, 7ltrnval1 40128 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑋) 𝑊)) → (𝐹‘(𝐺𝑋)) = (𝐺𝑋))
161, 2, 9, 14, 15syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = (𝐺𝑋))
1716, 13eqtrd 2764 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = 𝑋)
18 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2l 1227 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 simpl2r 1228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝑋𝐵)
21 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → ¬ 𝑋 𝑊)
2220, 21jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
23 simpl31 1255 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝐹𝑇)
24 simpl32 1256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝐺𝑇)
25 simpl33 1257 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐹‘(𝐺𝑃)) = 𝑃)
26 cdlemg7.a . . . 4 𝐴 = (Atoms‘𝐾)
275, 11, 26, 6, 7cdlemg7aN 40619 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)
2818, 19, 22, 23, 24, 25, 27syl123anc 1389 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = 𝑋)
2917, 28pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator