Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7N Structured version   Visualization version   GIF version

Theorem cdlemg7N 40645
Description: TODO: FIX COMMENT. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg7.b 𝐵 = (Base‘𝐾)
cdlemg7.l = (le‘𝐾)
cdlemg7.a 𝐴 = (Atoms‘𝐾)
cdlemg7.h 𝐻 = (LHyp‘𝐾)
cdlemg7.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg7N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)

Proof of Theorem cdlemg7N
StepHypRef Expression
1 simpl1 1192 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl31 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝐹𝑇)
3 simpl32 1256 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝐺𝑇)
4 simpl2r 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝑋𝐵)
5 cdlemg7.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cdlemg7.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 cdlemg7.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
85, 6, 7ltrncl 40144 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
91, 3, 4, 8syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) ∈ 𝐵)
10 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → 𝑋 𝑊)
11 cdlemg7.l . . . . . . 7 = (le‘𝐾)
125, 11, 6, 7ltrnval1 40153 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐺𝑋) = 𝑋)
131, 3, 4, 10, 12syl112anc 1376 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) = 𝑋)
1413, 10eqbrtrd 5141 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐺𝑋) 𝑊)
155, 11, 6, 7ltrnval1 40153 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑋) 𝑊)) → (𝐹‘(𝐺𝑋)) = (𝐺𝑋))
161, 2, 9, 14, 15syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = (𝐺𝑋))
1716, 13eqtrd 2770 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = 𝑋)
18 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl2l 1227 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
20 simpl2r 1228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝑋𝐵)
21 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → ¬ 𝑋 𝑊)
2220, 21jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
23 simpl31 1255 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝐹𝑇)
24 simpl32 1256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → 𝐺𝑇)
25 simpl33 1257 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐹‘(𝐺𝑃)) = 𝑃)
26 cdlemg7.a . . . 4 𝐴 = (Atoms‘𝐾)
275, 11, 26, 6, 7cdlemg7aN 40644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)
2818, 19, 22, 23, 24, 25, 27syl123anc 1389 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) ∧ ¬ 𝑋 𝑊) → (𝐹‘(𝐺𝑋)) = 𝑋)
2917, 28pm2.61dan 812 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Atomscatm 39281  HLchlt 39368  LHypclh 40003  LTrncltrn 40120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-undef 8272  df-map 8842  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator