Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Structured version   Visualization version   GIF version

Theorem cdlemg12e 39821
Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemg12e.z 0 = (0.β€˜πΎ)
Assertion
Ref Expression
cdlemg12e ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) β‰  0 )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 1209 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
2 simpl1 1189 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
3 simpl21 1249 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐹 ∈ 𝑇)
4 simpl22 1250 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐺 ∈ 𝑇)
5 simpl23 1251 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝑃 β‰  𝑄)
6 simpl31 1252 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄))
7 simpl32 1253 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))
8 cdlemg12.l . . . . . . . . 9 ≀ = (leβ€˜πΎ)
9 cdlemg12.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
10 cdlemg12.m . . . . . . . . 9 ∧ = (meetβ€˜πΎ)
11 cdlemg12.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
12 cdlemg12.h . . . . . . . . 9 𝐻 = (LHypβ€˜πΎ)
13 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
14 cdlemg12b.r . . . . . . . . 9 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
158, 9, 10, 11, 12, 13, 14cdlemg12d 39820 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 β‰  𝑄 ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ (π‘…β€˜πΊ) ≀ ((π‘…β€˜πΉ) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))))
162, 3, 4, 5, 6, 7, 15syl123anc 1385 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) ≀ ((π‘…β€˜πΉ) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))))
17 simpr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 )
1817oveq2d 7427 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΉ) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))) = ((π‘…β€˜πΉ) ∨ 0 ))
19 simp11l 1282 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝐾 ∈ HL)
2019adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐾 ∈ HL)
21 hlol 38534 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
2220, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐾 ∈ OL)
23 simpl11 1246 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
24 eqid 2730 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2524, 12, 13, 14trlcl 39338 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
2623, 3, 25syl2anc 582 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ))
27 cdlemg12e.z . . . . . . . . . 10 0 = (0.β€˜πΎ)
2824, 9, 27olj01 38398 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ)) β†’ ((π‘…β€˜πΉ) ∨ 0 ) = (π‘…β€˜πΉ))
2922, 26, 28syl2anc 582 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΉ) ∨ 0 ) = (π‘…β€˜πΉ))
3018, 29eqtrd 2770 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΉ) ∨ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄))) = (π‘…β€˜πΉ))
3116, 30breqtrd 5173 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) ≀ (π‘…β€˜πΉ))
32 hlatl 38533 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
3320, 32syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐾 ∈ AtLat)
34 hlop 38535 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
3520, 34syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝐾 ∈ OP)
3624, 12, 13, 14trlcl 39338 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
3723, 4, 36syl2anc 582 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ))
38 simp12l 1284 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑃 ∈ 𝐴)
3938adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝑃 ∈ 𝐴)
40 simp13l 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ 𝑄 ∈ 𝐴)
4140adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ 𝑄 ∈ 𝐴)
4224, 9, 11hlatjcl 38540 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
4320, 39, 41, 42syl3anc 1369 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
4424, 8, 27opnlen0 38361 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (π‘…β€˜πΊ) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄)) β†’ (π‘…β€˜πΊ) β‰  0 )
4535, 37, 43, 7, 44syl31anc 1371 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) β‰  0 )
46 simp11r 1283 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ π‘Š ∈ 𝐻)
4746adantr 479 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ π‘Š ∈ 𝐻)
4827, 11, 12, 13, 14trlatn0 39346 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ ((π‘…β€˜πΊ) ∈ 𝐴 ↔ (π‘…β€˜πΊ) β‰  0 ))
4920, 47, 4, 48syl21anc 834 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΊ) ∈ 𝐴 ↔ (π‘…β€˜πΊ) β‰  0 ))
5045, 49mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) ∈ 𝐴)
5124, 8, 27opnlen0 38361 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (π‘…β€˜πΉ) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄)) β†’ (π‘…β€˜πΉ) β‰  0 )
5235, 26, 43, 6, 51syl31anc 1371 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΉ) β‰  0 )
5327, 11, 12, 13, 14trlatn0 39346 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((π‘…β€˜πΉ) ∈ 𝐴 ↔ (π‘…β€˜πΉ) β‰  0 ))
5420, 47, 3, 53syl21anc 834 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΉ) ∈ 𝐴 ↔ (π‘…β€˜πΉ) β‰  0 ))
5552, 54mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
568, 11atcmp 38484 . . . . . . 7 ((𝐾 ∈ AtLat ∧ (π‘…β€˜πΊ) ∈ 𝐴 ∧ (π‘…β€˜πΉ) ∈ 𝐴) β†’ ((π‘…β€˜πΊ) ≀ (π‘…β€˜πΉ) ↔ (π‘…β€˜πΊ) = (π‘…β€˜πΉ)))
5733, 50, 55, 56syl3anc 1369 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ ((π‘…β€˜πΊ) ≀ (π‘…β€˜πΉ) ↔ (π‘…β€˜πΊ) = (π‘…β€˜πΉ)))
5831, 57mpbid 231 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΊ) = (π‘…β€˜πΉ))
5958eqcomd 2736 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 ) β†’ (π‘…β€˜πΉ) = (π‘…β€˜πΊ))
6059ex 411 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) = 0 β†’ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)))
6160necon3d 2959 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ ((π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ) β†’ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) β‰  0 ))
621, 61mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))) β†’ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ 𝑃) ∧ ((πΉβ€˜(πΊβ€˜π‘„)) ∨ 𝑄)) β‰  0 )
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  0.cp0 18380  OPcops 38345  OLcol 38347  Atomscatm 38436  AtLatcal 38437  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  trLctrl 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333
This theorem is referenced by:  cdlemg12g  39823
  Copyright terms: Public domain W3C validator