Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Structured version   Visualization version   GIF version

Theorem cdlemg12e 40346
Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg12e.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdlemg12e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 1208 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1 1188 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
3 simpl21 1248 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐹𝑇)
4 simpl22 1249 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐺𝑇)
5 simpl23 1250 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝑄)
6 simpl31 1251 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐹) (𝑃 𝑄))
7 simpl32 1252 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐺) (𝑃 𝑄))
8 cdlemg12.l . . . . . . . . 9 = (le‘𝐾)
9 cdlemg12.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg12.m . . . . . . . . 9 = (meet‘𝐾)
11 cdlemg12.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
158, 9, 10, 11, 12, 13, 14cdlemg12d 40345 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
162, 3, 4, 5, 6, 7, 15syl123anc 1384 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
17 simpr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 )
1817oveq2d 7440 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = ((𝑅𝐹) 0 ))
19 simp11l 1281 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2019adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ HL)
21 hlol 39059 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
2220, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OL)
23 simpl11 1245 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 eqid 2726 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2524, 12, 13, 14trlcl 39863 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2623, 3, 25syl2anc 582 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ (Base‘𝐾))
27 cdlemg12e.z . . . . . . . . . 10 0 = (0.‘𝐾)
2824, 9, 27olj01 38923 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
2922, 26, 28syl2anc 582 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
3018, 29eqtrd 2766 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = (𝑅𝐹))
3116, 30breqtrd 5179 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) (𝑅𝐹))
32 hlatl 39058 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3320, 32syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ AtLat)
34 hlop 39060 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3520, 34syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OP)
3624, 12, 13, 14trlcl 39863 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3723, 4, 36syl2anc 582 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ (Base‘𝐾))
38 simp12l 1283 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
3938adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝐴)
40 simp13l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
4140adantr 479 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑄𝐴)
4224, 9, 11hlatjcl 39065 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4320, 39, 41, 42syl3anc 1368 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑃 𝑄) ∈ (Base‘𝐾))
4424, 8, 27opnlen0 38886 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)) → (𝑅𝐺) ≠ 0 )
4535, 37, 43, 7, 44syl31anc 1370 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ≠ 0 )
46 simp11r 1282 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
4746adantr 479 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑊𝐻)
4827, 11, 12, 13, 14trlatn0 39871 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
4920, 47, 4, 48syl21anc 836 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
5045, 49mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ 𝐴)
5124, 8, 27opnlen0 38886 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐹) (𝑃 𝑄)) → (𝑅𝐹) ≠ 0 )
5235, 26, 43, 6, 51syl31anc 1370 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ≠ 0 )
5327, 11, 12, 13, 14trlatn0 39871 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5420, 47, 3, 53syl21anc 836 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5552, 54mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ 𝐴)
568, 11atcmp 39009 . . . . . . 7 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5733, 50, 55, 56syl3anc 1368 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5831, 57mpbid 231 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) = (𝑅𝐹))
5958eqcomd 2732 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) = (𝑅𝐺))
6059ex 411 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 → (𝑅𝐹) = (𝑅𝐺)))
6160necon3d 2951 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 ))
621, 61mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  joincjn 18336  meetcmee 18337  0.cp0 18448  OPcops 38870  OLcol 38872  Atomscatm 38961  AtLatcal 38962  HLchlt 39048  LHypclh 39683  LTrncltrn 39800  trLctrl 39857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38651
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-undef 8288  df-map 8857  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-p1 18451  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197  df-lplanes 39198  df-lvols 39199  df-lines 39200  df-psubsp 39202  df-pmap 39203  df-padd 39495  df-lhyp 39687  df-laut 39688  df-ldil 39803  df-ltrn 39804  df-trl 39858
This theorem is referenced by:  cdlemg12g  40348
  Copyright terms: Public domain W3C validator