Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Structured version   Visualization version   GIF version

Theorem cdlemg12e 37782
Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg12e.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdlemg12e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 1207 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1 1187 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
3 simpl21 1247 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐹𝑇)
4 simpl22 1248 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐺𝑇)
5 simpl23 1249 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝑄)
6 simpl31 1250 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐹) (𝑃 𝑄))
7 simpl32 1251 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐺) (𝑃 𝑄))
8 cdlemg12.l . . . . . . . . 9 = (le‘𝐾)
9 cdlemg12.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg12.m . . . . . . . . 9 = (meet‘𝐾)
11 cdlemg12.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
158, 9, 10, 11, 12, 13, 14cdlemg12d 37781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
162, 3, 4, 5, 6, 7, 15syl123anc 1383 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
17 simpr 487 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 )
1817oveq2d 7171 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = ((𝑅𝐹) 0 ))
19 simp11l 1280 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2019adantr 483 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ HL)
21 hlol 36496 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
2220, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OL)
23 simpl11 1244 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 eqid 2821 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2524, 12, 13, 14trlcl 37299 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2623, 3, 25syl2anc 586 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ (Base‘𝐾))
27 cdlemg12e.z . . . . . . . . . 10 0 = (0.‘𝐾)
2824, 9, 27olj01 36360 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
2922, 26, 28syl2anc 586 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
3018, 29eqtrd 2856 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = (𝑅𝐹))
3116, 30breqtrd 5091 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) (𝑅𝐹))
32 hlatl 36495 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3320, 32syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ AtLat)
34 hlop 36497 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3520, 34syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OP)
3624, 12, 13, 14trlcl 37299 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3723, 4, 36syl2anc 586 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ (Base‘𝐾))
38 simp12l 1282 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
3938adantr 483 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝐴)
40 simp13l 1284 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
4140adantr 483 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑄𝐴)
4224, 9, 11hlatjcl 36502 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4320, 39, 41, 42syl3anc 1367 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑃 𝑄) ∈ (Base‘𝐾))
4424, 8, 27opnlen0 36323 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)) → (𝑅𝐺) ≠ 0 )
4535, 37, 43, 7, 44syl31anc 1369 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ≠ 0 )
46 simp11r 1281 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
4746adantr 483 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑊𝐻)
4827, 11, 12, 13, 14trlatn0 37307 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
4920, 47, 4, 48syl21anc 835 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
5045, 49mpbird 259 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ 𝐴)
5124, 8, 27opnlen0 36323 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐹) (𝑃 𝑄)) → (𝑅𝐹) ≠ 0 )
5235, 26, 43, 6, 51syl31anc 1369 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ≠ 0 )
5327, 11, 12, 13, 14trlatn0 37307 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5420, 47, 3, 53syl21anc 835 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5552, 54mpbird 259 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ 𝐴)
568, 11atcmp 36446 . . . . . . 7 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5733, 50, 55, 56syl3anc 1367 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5831, 57mpbid 234 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) = (𝑅𝐹))
5958eqcomd 2827 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) = (𝑅𝐺))
6059ex 415 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 → (𝑅𝐹) = (𝑅𝐺)))
6160necon3d 3037 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 ))
621, 61mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  Basecbs 16482  lecple 16571  joincjn 17553  meetcmee 17554  0.cp0 17646  OPcops 36307  OLcol 36309  Atomscatm 36398  AtLatcal 36399  HLchlt 36485  LHypclh 37119  LTrncltrn 37236  trLctrl 37293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-riotaBAD 36088
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-undef 7938  df-map 8407  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-oposet 36311  df-ol 36313  df-oml 36314  df-covers 36401  df-ats 36402  df-atl 36433  df-cvlat 36457  df-hlat 36486  df-llines 36633  df-lplanes 36634  df-lvols 36635  df-lines 36636  df-psubsp 36638  df-pmap 36639  df-padd 36931  df-lhyp 37123  df-laut 37124  df-ldil 37239  df-ltrn 37240  df-trl 37294
This theorem is referenced by:  cdlemg12g  37784
  Copyright terms: Public domain W3C validator