Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Structured version   Visualization version   GIF version

Theorem cdlemg12e 38908
Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg12e.z 0 = (0.‘𝐾)
Assertion
Ref Expression
cdlemg12e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 1210 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
2 simpl1 1190 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
3 simpl21 1250 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐹𝑇)
4 simpl22 1251 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐺𝑇)
5 simpl23 1252 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝑄)
6 simpl31 1253 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐹) (𝑃 𝑄))
7 simpl32 1254 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ¬ (𝑅𝐺) (𝑃 𝑄))
8 cdlemg12.l . . . . . . . . 9 = (le‘𝐾)
9 cdlemg12.j . . . . . . . . 9 = (join‘𝐾)
10 cdlemg12.m . . . . . . . . 9 = (meet‘𝐾)
11 cdlemg12.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 cdlemg12.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
13 cdlemg12.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 cdlemg12b.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
158, 9, 10, 11, 12, 13, 14cdlemg12d 38907 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
162, 3, 4, 5, 6, 7, 15syl123anc 1386 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))))
17 simpr 485 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 )
1817oveq2d 7345 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = ((𝑅𝐹) 0 ))
19 simp11l 1283 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
2019adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ HL)
21 hlol 37621 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
2220, 21syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OL)
23 simpl11 1247 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 eqid 2736 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2524, 12, 13, 14trlcl 38425 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2623, 3, 25syl2anc 584 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ (Base‘𝐾))
27 cdlemg12e.z . . . . . . . . . 10 0 = (0.‘𝐾)
2824, 9, 27olj01 37485 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
2922, 26, 28syl2anc 584 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) 0 ) = (𝑅𝐹))
3018, 29eqtrd 2776 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄))) = (𝑅𝐹))
3116, 30breqtrd 5115 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) (𝑅𝐹))
32 hlatl 37620 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3320, 32syl 17 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ AtLat)
34 hlop 37622 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
3520, 34syl 17 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝐾 ∈ OP)
3624, 12, 13, 14trlcl 38425 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
3723, 4, 36syl2anc 584 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ (Base‘𝐾))
38 simp12l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
3938adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑃𝐴)
40 simp13l 1287 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
4140adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑄𝐴)
4224, 9, 11hlatjcl 37627 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4320, 39, 41, 42syl3anc 1370 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑃 𝑄) ∈ (Base‘𝐾))
4424, 8, 27opnlen0 37448 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)) → (𝑅𝐺) ≠ 0 )
4535, 37, 43, 7, 44syl31anc 1372 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ≠ 0 )
46 simp11r 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑊𝐻)
4746adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → 𝑊𝐻)
4827, 11, 12, 13, 14trlatn0 38433 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
4920, 47, 4, 48syl21anc 835 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) ∈ 𝐴 ↔ (𝑅𝐺) ≠ 0 ))
5045, 49mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) ∈ 𝐴)
5124, 8, 27opnlen0 37448 . . . . . . . . 9 (((𝐾 ∈ OP ∧ (𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ ¬ (𝑅𝐹) (𝑃 𝑄)) → (𝑅𝐹) ≠ 0 )
5235, 26, 43, 6, 51syl31anc 1372 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ≠ 0 )
5327, 11, 12, 13, 14trlatn0 38433 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5420, 47, 3, 53syl21anc 835 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐹) ∈ 𝐴 ↔ (𝑅𝐹) ≠ 0 ))
5552, 54mpbird 256 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) ∈ 𝐴)
568, 11atcmp 37571 . . . . . . 7 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐹) ∈ 𝐴) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5733, 50, 55, 56syl3anc 1370 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → ((𝑅𝐺) (𝑅𝐹) ↔ (𝑅𝐺) = (𝑅𝐹)))
5831, 57mpbid 231 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐺) = (𝑅𝐹))
5958eqcomd 2742 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) ∧ (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 ) → (𝑅𝐹) = (𝑅𝐺))
6059ex 413 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) = 0 → (𝑅𝐹) = (𝑅𝐺)))
6160necon3d 2961 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) ≠ (𝑅𝐺) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 ))
621, 61mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝐹‘(𝐺𝑃)) 𝑃) ((𝐹‘(𝐺𝑄)) 𝑄)) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5089  cfv 6473  (class class class)co 7329  Basecbs 17001  lecple 17058  joincjn 18118  meetcmee 18119  0.cp0 18230  OPcops 37432  OLcol 37434  Atomscatm 37523  AtLatcal 37524  HLchlt 37610  LHypclh 38245  LTrncltrn 38362  trLctrl 38419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-riotaBAD 37213
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-undef 8151  df-map 8680  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-p1 18233  df-lat 18239  df-clat 18306  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-llines 37759  df-lplanes 37760  df-lvols 37761  df-lines 37762  df-psubsp 37764  df-pmap 37765  df-padd 38057  df-lhyp 38249  df-laut 38250  df-ldil 38365  df-ltrn 38366  df-trl 38420
This theorem is referenced by:  cdlemg12g  38910
  Copyright terms: Public domain W3C validator