Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr5N Structured version   Visualization version   GIF version

Theorem lhpmcvr5N 35801
Description: Specialization of lhpmcvr2 35798. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑊,𝑝   𝐻,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem lhpmcvr5N
StepHypRef Expression
1 lhpmcvr2.b . . . 4 𝐵 = (Base‘𝐾)
2 lhpmcvr2.l . . . 4 = (le‘𝐾)
3 lhpmcvr2.j . . . 4 = (join‘𝐾)
4 lhpmcvr2.m . . . 4 = (meet‘𝐾)
5 lhpmcvr2.a . . . 4 𝐴 = (Atoms‘𝐾)
6 lhpmcvr2.h . . . 4 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 35798 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
873adant3 1155 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
9 simp3l 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑝 𝑊)
10 simp11 1253 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp12 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
12 simp2 1160 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝𝐴)
1312, 9jca 503 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
14 simp13l 1380 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑌𝐵)
15 simp13r 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑌) 𝑊)
16 simp11l 1376 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
1716hllatd 35138 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
181, 5atbase 35063 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1157 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝𝐵)
20 simp12l 1378 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
21 simp11r 1377 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
221, 6lhpbase 35772 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2321, 22syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
241, 4latmcl 17251 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2517, 20, 23, 24syl3anc 1483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
261, 2, 3latlej1 17259 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑝𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑝 (𝑝 (𝑋 𝑊)))
2717, 19, 25, 26syl3anc 1483 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝 (𝑝 (𝑋 𝑊)))
28 simp3r 1252 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑝 (𝑋 𝑊)) = 𝑋)
2927, 28breqtrd 4863 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝 𝑋)
301, 2, 3, 4, 5, 6lhpmcvr4N 35800 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
3110, 11, 13, 14, 15, 29, 30syl123anc 1499 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑝 𝑌)
329, 31, 283jca 1151 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
33323expia 1143 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋) → (¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
3433reximdva 3200 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → (∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
358, 34mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2155  wrex 3093   class class class wbr 4837  cfv 6095  (class class class)co 6868  Basecbs 16062  lecple 16154  joincjn 17143  meetcmee 17144  Latclat 17244  Atomscatm 35037  HLchlt 35124  LHypclh 35758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-proset 17127  df-poset 17145  df-plt 17157  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-p0 17238  df-p1 17239  df-lat 17245  df-clat 17307  df-oposet 34950  df-ol 34952  df-oml 34953  df-covers 35040  df-ats 35041  df-atl 35072  df-cvlat 35096  df-hlat 35125  df-lhyp 35762
This theorem is referenced by:  lhpmcvr6N  35802
  Copyright terms: Public domain W3C validator