Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr5N Structured version   Visualization version   GIF version

Theorem lhpmcvr5N 39994
Description: Specialization of lhpmcvr2 39991. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr5N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑊,𝑝   𝐻,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem lhpmcvr5N
StepHypRef Expression
1 lhpmcvr2.b . . . 4 𝐵 = (Base‘𝐾)
2 lhpmcvr2.l . . . 4 = (le‘𝐾)
3 lhpmcvr2.j . . . 4 = (join‘𝐾)
4 lhpmcvr2.m . . . 4 = (meet‘𝐾)
5 lhpmcvr2.a . . . 4 𝐴 = (Atoms‘𝐾)
6 lhpmcvr2.h . . . 4 𝐻 = (LHyp‘𝐾)
71, 2, 3, 4, 5, 6lhpmcvr2 39991 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
873adant3 1132 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
9 simp3l 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑝 𝑊)
10 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 simp12 1205 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
12 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝𝐴)
1312, 9jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑝𝐴 ∧ ¬ 𝑝 𝑊))
14 simp13l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑌𝐵)
15 simp13r 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑌) 𝑊)
16 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
1716hllatd 39330 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
181, 5atbase 39255 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
19183ad2ant2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝𝐵)
20 simp12l 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
21 simp11r 1286 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
221, 6lhpbase 39965 . . . . . . . . . 10 (𝑊𝐻𝑊𝐵)
2321, 22syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
241, 4latmcl 18375 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2517, 20, 23, 24syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
261, 2, 3latlej1 18383 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑝𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑝 (𝑝 (𝑋 𝑊)))
2717, 19, 25, 26syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝 (𝑝 (𝑋 𝑊)))
28 simp3r 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (𝑝 (𝑋 𝑊)) = 𝑋)
2927, 28breqtrd 5128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → 𝑝 𝑋)
301, 2, 3, 4, 5, 6lhpmcvr4N 39993 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → ¬ 𝑝 𝑌)
3110, 11, 13, 14, 15, 29, 30syl123anc 1389 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑝 𝑌)
329, 31, 283jca 1128 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴 ∧ (¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)) → (¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
33323expia 1121 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋) → (¬ 𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
3433reximdva 3146 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → (∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
358, 34mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-lhyp 39955
This theorem is referenced by:  lhpmcvr6N  39995
  Copyright terms: Public domain W3C validator