Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem7N Structured version   Visualization version   GIF version

Theorem osumcllem7N 36642
Description: Lemma for osumclN 36647. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem7N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑌,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐶(𝑞,𝑝)   + (𝑝)   𝑈(𝑞,𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem osumcllem7N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simp11 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ HL)
21hllatd 36044 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝐾 ∈ Lat)
3 simp12 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋𝐴)
4 simp23 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝𝐴)
5 simp22 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑋 ≠ ∅)
6 inss2 4128 . . . . . 6 (𝑌𝑀) ⊆ 𝑀
76sseli 3887 . . . . 5 (𝑞 ∈ (𝑌𝑀) → 𝑞𝑀)
873ad2ant3 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞𝑀)
9 osumcllem.m . . . 4 𝑀 = (𝑋 + {𝑝})
108, 9syl6eleq 2892 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑞 ∈ (𝑋 + {𝑝}))
11 osumcllem.l . . . 4 = (le‘𝐾)
12 osumcllem.j . . . 4 = (join‘𝐾)
13 osumcllem.a . . . 4 𝐴 = (Atoms‘𝐾)
14 osumcllem.p . . . 4 + = (+𝑃𝐾)
1511, 12, 13, 14elpaddatiN 36485 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
162, 3, 4, 5, 10, 15syl32anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
17 simp11 1196 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴))
18 simp121 1298 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑋 ⊆ ( 𝑌))
19 simp123 1300 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝𝐴)
20 simp2 1130 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑟𝑋)
21 inss1 4127 . . . . 5 (𝑌𝑀) ⊆ 𝑌
22 simp13 1198 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 ∈ (𝑌𝑀))
2321, 22sseldi 3889 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞𝑌)
24 simp3 1131 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑞 (𝑟 𝑝))
25 osumcllem.o . . . . 5 = (⊥𝑃𝐾)
26 osumcllem.c . . . . 5 𝐶 = (PSubCl‘𝐾)
27 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
2811, 12, 13, 14, 25, 26, 9, 27osumcllem6N 36641 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑝𝐴) ∧ (𝑟𝑋𝑞𝑌𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌))
2917, 18, 19, 20, 23, 24, 28syl123anc 1380 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) ∧ 𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + 𝑌))
3029rexlimdv3a 3248 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + 𝑌)))
3116, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝𝐴) ∧ 𝑞 ∈ (𝑌𝑀)) → 𝑝 ∈ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  wcel 2080  wne 2983  wrex 3105  cin 3860  wss 3861  c0 4213  {csn 4474   class class class wbr 4964  cfv 6228  (class class class)co 7019  lecple 16401  joincjn 17383  Latclat 17484  Atomscatm 35943  HLchlt 36030  +𝑃cpadd 36475  𝑃cpolN 36582  PSubClcpscN 36614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-riotaBAD 35633
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rmo 3112  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-iin 4830  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-1st 7548  df-2nd 7549  df-undef 7793  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35856  df-ol 35858  df-oml 35859  df-covers 35946  df-ats 35947  df-atl 35978  df-cvlat 36002  df-hlat 36031  df-pmap 36184  df-padd 36476  df-polarityN 36583
This theorem is referenced by:  osumcllem8N  36643
  Copyright terms: Public domain W3C validator