Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem7N Structured version   Visualization version   GIF version

Theorem osumcllem7N 39323
Description: Lemma for osumclN 39328. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l ≀ = (leβ€˜πΎ)
osumcllem.j ∨ = (joinβ€˜πΎ)
osumcllem.a 𝐴 = (Atomsβ€˜πΎ)
osumcllem.p + = (+π‘ƒβ€˜πΎ)
osumcllem.o βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
osumcllem.c 𝐢 = (PSubClβ€˜πΎ)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))
Assertion
Ref Expression
osumcllem7N (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
Distinct variable groups:   𝐴,π‘ž   𝐾,π‘ž   𝑀,π‘ž   βŠ₯ ,π‘ž   + ,π‘ž   𝑋,π‘ž   π‘Œ,π‘ž   π‘ž,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝐢(π‘ž,𝑝)   + (𝑝)   π‘ˆ(π‘ž,𝑝)   ∨ (π‘ž,𝑝)   𝐾(𝑝)   ≀ (π‘ž,𝑝)   𝑀(𝑝)   βŠ₯ (𝑝)   𝑋(𝑝)   π‘Œ(𝑝)

Proof of Theorem osumcllem7N
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 simp11 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝐾 ∈ HL)
21hllatd 38724 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝐾 ∈ Lat)
3 simp12 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑋 βŠ† 𝐴)
4 simp23 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑝 ∈ 𝐴)
5 simp22 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑋 β‰  βˆ…)
6 inss2 4221 . . . . . 6 (π‘Œ ∩ 𝑀) βŠ† 𝑀
76sseli 3970 . . . . 5 (π‘ž ∈ (π‘Œ ∩ 𝑀) β†’ π‘ž ∈ 𝑀)
873ad2ant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ π‘ž ∈ 𝑀)
9 osumcllem.m . . . 4 𝑀 = (𝑋 + {𝑝})
108, 9eleqtrdi 2835 . . 3 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ π‘ž ∈ (𝑋 + {𝑝}))
11 osumcllem.l . . . 4 ≀ = (leβ€˜πΎ)
12 osumcllem.j . . . 4 ∨ = (joinβ€˜πΎ)
13 osumcllem.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
14 osumcllem.p . . . 4 + = (+π‘ƒβ€˜πΎ)
1511, 12, 13, 14elpaddatiN 39166 . . 3 (((𝐾 ∈ Lat ∧ 𝑋 βŠ† 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 β‰  βˆ… ∧ π‘ž ∈ (𝑋 + {𝑝}))) β†’ βˆƒπ‘Ÿ ∈ 𝑋 π‘ž ≀ (π‘Ÿ ∨ 𝑝))
162, 3, 4, 5, 10, 15syl32anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ βˆƒπ‘Ÿ ∈ 𝑋 π‘ž ≀ (π‘Ÿ ∨ 𝑝))
17 simp11 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ (𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴))
18 simp121 1302 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ))
19 simp123 1304 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ 𝑝 ∈ 𝐴)
20 simp2 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ π‘Ÿ ∈ 𝑋)
21 inss1 4220 . . . . 5 (π‘Œ ∩ 𝑀) βŠ† π‘Œ
22 simp13 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ π‘ž ∈ (π‘Œ ∩ 𝑀))
2321, 22sselid 3972 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ π‘ž ∈ π‘Œ)
24 simp3 1135 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ π‘ž ≀ (π‘Ÿ ∨ 𝑝))
25 osumcllem.o . . . . 5 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
26 osumcllem.c . . . . 5 𝐢 = (PSubClβ€˜πΎ)
27 osumcllem.u . . . . 5 π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))
2811, 12, 13, 14, 25, 26, 9, 27osumcllem6N 39322 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑝 ∈ 𝐴) ∧ (π‘Ÿ ∈ 𝑋 ∧ π‘ž ∈ π‘Œ ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝))) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
2917, 18, 19, 20, 23, 24, 28syl123anc 1384 . . 3 ((((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) ∧ π‘Ÿ ∈ 𝑋 ∧ π‘ž ≀ (π‘Ÿ ∨ 𝑝)) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
3029rexlimdv3a 3151 . 2 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ (βˆƒπ‘Ÿ ∈ 𝑋 π‘ž ≀ (π‘Ÿ ∨ 𝑝) β†’ 𝑝 ∈ (𝑋 + π‘Œ)))
3116, 30mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) ∧ (𝑋 βŠ† ( βŠ₯ β€˜π‘Œ) ∧ 𝑋 β‰  βˆ… ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ (π‘Œ ∩ 𝑀)) β†’ 𝑝 ∈ (𝑋 + π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  {csn 4620   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  lecple 17203  joincjn 18266  Latclat 18386  Atomscatm 38623  HLchlt 38710  +𝑃cpadd 39156  βŠ₯𝑃cpolN 39263  PSubClcpscN 39295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-pmap 38865  df-padd 39157  df-polarityN 39264
This theorem is referenced by:  osumcllem8N  39324
  Copyright terms: Public domain W3C validator