Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37378 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝐾 ∈ Lat) |
3 | | simp12 1203 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑋 ⊆ 𝐴) |
4 | | simp23 1207 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ 𝐴) |
5 | | simp22 1206 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑋 ≠ ∅) |
6 | | inss2 4163 |
. . . . . 6
⊢ (𝑌 ∩ 𝑀) ⊆ 𝑀 |
7 | 6 | sseli 3917 |
. . . . 5
⊢ (𝑞 ∈ (𝑌 ∩ 𝑀) → 𝑞 ∈ 𝑀) |
8 | 7 | 3ad2ant3 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑞 ∈ 𝑀) |
9 | | osumcllem.m |
. . . 4
⊢ 𝑀 = (𝑋 + {𝑝}) |
10 | 8, 9 | eleqtrdi 2849 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑞 ∈ (𝑋 + {𝑝})) |
11 | | osumcllem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
12 | | osumcllem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
13 | | osumcllem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
14 | | osumcllem.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
15 | 11, 12, 13, 14 | elpaddatiN 37819 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
16 | 2, 3, 4, 5, 10, 15 | syl32anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
17 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴)) |
18 | | simp121 1304 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) |
19 | | simp123 1306 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ 𝐴) |
20 | | simp2 1136 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑟 ∈ 𝑋) |
21 | | inss1 4162 |
. . . . 5
⊢ (𝑌 ∩ 𝑀) ⊆ 𝑌 |
22 | | simp13 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑞 ∈ (𝑌 ∩ 𝑀)) |
23 | 21, 22 | sselid 3919 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑞 ∈ 𝑌) |
24 | | simp3 1137 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑞 ≤ (𝑟 ∨ 𝑝)) |
25 | | osumcllem.o |
. . . . 5
⊢ ⊥ =
(⊥𝑃‘𝐾) |
26 | | osumcllem.c |
. . . . 5
⊢ 𝐶 = (PSubCl‘𝐾) |
27 | | osumcllem.u |
. . . . 5
⊢ 𝑈 = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) |
28 | 11, 12, 13, 14, 25, 26, 9, 27 | osumcllem6N 37975 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌)) |
29 | 17, 18, 19, 20, 23, 24, 28 | syl123anc 1386 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) ∧ 𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + 𝑌)) |
30 | 29 | rexlimdv3a 3215 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → (∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ∈ (𝑋 + 𝑌))) |
31 | 16, 30 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅ ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ (𝑌 ∩ 𝑀)) → 𝑝 ∈ (𝑋 + 𝑌)) |