MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem2 Structured version   Visualization version   GIF version

Theorem dvfsumlem2 24628
Description: Lemma for dvfsumrlim 24632. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem2 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . . . 9 𝑆 = (𝑇(,)+∞)
2 ioossre 12793 . . . . . . . . 9 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3987 . . . . . . . 8 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . 8 (𝜑𝑌𝑆)
53, 4sseldi 3951 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . . 11 (𝜑𝑋𝑆)
76, 1eleqtrdi 2926 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑇(,)+∞))
8 dvfsum.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
98rexrd 10685 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ*)
10 elioopnf 12828 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
127, 11mpbid 235 . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
1312simpld 498 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
14 reflcl 13168 . . . . . . . 8 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (⌊‘𝑋) ∈ ℝ)
165, 15resubcld 11062 . . . . . 6 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℝ)
17 csbeq1 3869 . . . . . . . 8 (𝑦 = 𝑌𝑦 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
1817eleq1d 2900 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
193a1i 11 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℝ)
20 dvfsum.a . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
21 dvfsum.b1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐵𝑉)
22 dvfsum.b3 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2319, 20, 21, 22dvmptrecl 24625 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
2423fmpttd 6868 . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
25 nfcv 2982 . . . . . . . . . 10 𝑦𝐵
26 nfcsb1v 3890 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐵
27 csbeq1a 3880 . . . . . . . . . 10 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
2825, 26, 27cbvmpt 5154 . . . . . . . . 9 (𝑥𝑆𝐵) = (𝑦𝑆𝑦 / 𝑥𝐵)
2928fmpt 6863 . . . . . . . 8 (∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ)
3024, 29sylibr 237 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ)
3118, 30, 4rspcdva 3611 . . . . . 6 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
3216, 31remulcld 10665 . . . . 5 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
33 csbeq1 3869 . . . . . . 7 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
3433eleq1d 2900 . . . . . 6 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
3520fmpttd 6868 . . . . . . 7 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
36 nfcv 2982 . . . . . . . . 9 𝑦𝐴
37 nfcsb1v 3890 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴
38 csbeq1a 3880 . . . . . . . . 9 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
3936, 37, 38cbvmpt 5154 . . . . . . . 8 (𝑥𝑆𝐴) = (𝑦𝑆𝑦 / 𝑥𝐴)
4039fmpt 6863 . . . . . . 7 (∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑥𝑆𝐴):𝑆⟶ℝ)
4135, 40sylibr 237 . . . . . 6 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ)
4234, 41, 4rspcdva 3611 . . . . 5 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
4332, 42resubcld 11062 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
4413, 15resubcld 11062 . . . . . 6 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
45 csbeq1 3869 . . . . . . . 8 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
4645eleq1d 2900 . . . . . . 7 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
4746, 30, 6rspcdva 3611 . . . . . 6 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
4844, 47remulcld 10665 . . . . 5 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
49 csbeq1 3869 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
5049eleq1d 2900 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
5150, 41, 6rspcdva 3611 . . . . 5 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
5248, 51resubcld 11062 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
53 fzfid 13343 . . . . 5 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
54 dvfsum.b2 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
5554ralrimiva 3177 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
56 elfzuz 12905 . . . . . . 7 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
57 dvfsum.z . . . . . . 7 𝑍 = (ℤ𝑀)
5856, 57eleqtrrdi 2927 . . . . . 6 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
59 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
6059eleq1d 2900 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
6160rspccva 3608 . . . . . 6 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
6255, 58, 61syl2an 598 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
6353, 62fsumrecl 15089 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
6444, 31remulcld 10665 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
6564, 51resubcld 11062 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
665, 13resubcld 11062 . . . . . . . . 9 (𝜑 → (𝑌𝑋) ∈ ℝ)
6731, 66remulcld 10665 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
6831recnd 10663 . . . . . . . . . 10 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
695recnd 10663 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
7013recnd 10663 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
7168, 69, 70subdid 11090 . . . . . . . . 9 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)))
72 eqid 2824 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7372mulcn 23470 . . . . . . . . . . 11 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
74 pnfxr 10689 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7612simprd 499 . . . . . . . . . . . . . . 15 (𝜑𝑇 < 𝑋)
775ltpnfd 12511 . . . . . . . . . . . . . . 15 (𝜑𝑌 < +∞)
78 iccssioo 12801 . . . . . . . . . . . . . . 15 (((𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝑇 < 𝑋𝑌 < +∞)) → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
799, 75, 76, 77, 78syl22anc 837 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
8079, 2sstrdi 3965 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
81 ax-resscn 10588 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
8280, 81sstrdi 3965 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
8381a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
84 cncfmptc 23515 . . . . . . . . . . . 12 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8531, 82, 83, 84syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
86 cncfmptid 23516 . . . . . . . . . . . 12 (((𝑋[,]𝑌) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8780, 81, 86sylancl 589 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
88 remulcl 10616 . . . . . . . . . . 11 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑌 / 𝑥𝐵 · 𝑦) ∈ ℝ)
8972, 73, 85, 87, 81, 88cncfmpt2ss 23519 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
90 reelprrecn 10623 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
9190a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
92 ioossicc 12818 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
9392, 80sstrid 3964 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
9493sselda 3953 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℝ)
9594recnd 10663 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℂ)
96 1cnd 10630 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 1 ∈ ℂ)
97 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
9897recnd 10663 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
99 1cnd 10630 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
10091dvmptid 24558 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
10172tgioo2 23406 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
102 iooretop 23369 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ∈ (topGen‘ran (,))
103102a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ∈ (topGen‘ran (,)))
10491, 98, 99, 100, 93, 101, 72, 103dvmptres 24564 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 1))
10591, 95, 96, 104, 68dvmptcmul 24565 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)))
10668mulid1d 10652 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐵 · 1) = 𝑌 / 𝑥𝐵)
107106mpteq2dv 5149 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
108105, 107eqtrd 2859 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
10979, 1sseqtrrdi 4004 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ 𝑆)
110109resmptd 5896 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
11120recnd 10663 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
112111fmpttd 6868 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℂ)
11322dmeqd 5762 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
11421ralrimiva 3177 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
115 dmmptg 6084 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
117113, 116eqtrd 2859 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
118 dvcn 24522 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴):𝑆⟶ℂ ∧ 𝑆 ⊆ ℝ) ∧ dom (ℝ D (𝑥𝑆𝐴)) = 𝑆) → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
11983, 112, 19, 117, 118syl31anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
120 cncffvrn 23501 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ)) → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12181, 119, 120sylancr 590 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12235, 121mpbird 260 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℝ))
12339, 122eqeltrrid 2921 . . . . . . . . . . . 12 (𝜑 → (𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ))
124 rescncf 23500 . . . . . . . . . . . 12 ((𝑋[,]𝑌) ⊆ 𝑆 → ((𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ) → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
125109, 123, 124sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
126110, 125eqeltrrd 2917 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
12741r19.21bi 3203 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℝ)
128127recnd 10663 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12930r19.21bi 3203 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐵 ∈ ℝ)
13039oveq2i 7157 . . . . . . . . . . . 12 (ℝ D (𝑥𝑆𝐴)) = (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴))
13122, 130, 283eqtr3g 2882 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴)) = (𝑦𝑆𝑦 / 𝑥𝐵))
13292, 109sstrid 3964 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝑆)
13391, 128, 129, 131, 132, 101, 72, 103dvmptres 24564 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
13492sseli 3949 . . . . . . . . . . 11 (𝑦 ∈ (𝑋(,)𝑌) → 𝑦 ∈ (𝑋[,]𝑌))
135 simpl 486 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝜑)
136109sselda 3953 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑆)
1374adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑆)
138 dvfsum.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ)
139138adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷 ∈ ℝ)
14013adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋 ∈ ℝ)
141 elicc2 12797 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
14213, 5, 141syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
143142biimpa 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌))
144143simp1d 1139 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ)
145 dvfsumlem1.3 . . . . . . . . . . . . . 14 (𝜑𝐷𝑋)
146145adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑋)
147143simp2d 1140 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑦)
148139, 140, 144, 146, 147letrd 10791 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑦)
149143simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑌)
150 dvfsumlem1.5 . . . . . . . . . . . . 13 (𝜑𝑌𝑈)
151150adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑈)
152 simp2r 1197 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌𝑆)
153 eleq1 2903 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑆𝑌𝑆))
154153anbi2d 631 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝑦𝑆𝑘𝑆) ↔ (𝑦𝑆𝑌𝑆)))
155 breq2 5057 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑦𝑘𝑦𝑌))
156 breq1 5056 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑈𝑌𝑈))
157155, 1563anbi23d 1436 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝐷𝑦𝑦𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑌𝑌𝑈)))
158154, 1573anbi23d 1436 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈))))
159 vex 3483 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ V
160159, 59csbie 3901 . . . . . . . . . . . . . . . . 17 𝑘 / 𝑥𝐵 = 𝐶
161 csbeq1 3869 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌𝑘 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
162160, 161syl5eqr 2873 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌𝐶 = 𝑌 / 𝑥𝐵)
163162breq1d 5063 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → (𝐶𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
164158, 163imbi12d 348 . . . . . . . . . . . . . 14 (𝑘 = 𝑌 → (((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)))
165 nfv 1916 . . . . . . . . . . . . . . . 16 𝑥(𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))
166 nfcv 2982 . . . . . . . . . . . . . . . . 17 𝑥𝐶
167 nfcv 2982 . . . . . . . . . . . . . . . . 17 𝑥
168166, 167, 26nfbr 5100 . . . . . . . . . . . . . . . 16 𝑥 𝐶𝑦 / 𝑥𝐵
169165, 168nfim 1898 . . . . . . . . . . . . . . 15 𝑥((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
170 eleq1 2903 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
171170anbi1d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑥𝑆𝑘𝑆) ↔ (𝑦𝑆𝑘𝑆)))
172 breq2 5057 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐷𝑥𝐷𝑦))
173 breq1 5056 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑘𝑦𝑘))
174172, 1733anbi12d 1434 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑘𝑘𝑈)))
175171, 1743anbi23d 1436 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))))
17627breq2d 5065 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐶𝐵𝐶𝑦 / 𝑥𝐵))
177175, 176imbi12d 348 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)))
178 dvfsum.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
179169, 177, 178chvarfv 2244 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
180164, 179vtoclg 3553 . . . . . . . . . . . . 13 (𝑌𝑆 → ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
181152, 180mpcom 38 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
182135, 136, 137, 148, 149, 151, 181syl123anc 1384 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
183134, 182sylan2 595 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
18413rexrd 10685 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ*)
1855rexrd 10685 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ*)
186 dvfsumlem1.4 . . . . . . . . . . 11 (𝜑𝑋𝑌)
187 lbicc2 12849 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
188184, 185, 186, 187syl3anc 1368 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑋[,]𝑌))
189 ubicc2 12850 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
190184, 185, 186, 189syl3anc 1368 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑋[,]𝑌))
191 oveq2 7154 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑋))
192 oveq2 7154 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑌))
19313, 5, 89, 108, 126, 133, 183, 188, 190, 186, 191, 49, 192, 33dvle 24608 . . . . . . . . 9 (𝜑 → ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19471, 193eqbrtrd 5075 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19567, 42, 51, 194lesubd 11238 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ≤ (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
19664recnd 10663 . . . . . . . . 9 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19732recnd 10663 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19842recnd 10663 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
199196, 197, 198subsubd 11019 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
200197, 196negsubdi2d 11007 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20115recnd 10663 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘𝑋) ∈ ℂ)
20269, 70, 201nnncan2d 11026 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) = (𝑌𝑋))
203202oveq1d 7161 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = ((𝑌𝑋) · 𝑌 / 𝑥𝐵))
20416recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
20544recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
206204, 205, 68subdird 11091 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20766recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑋) ∈ ℂ)
208207, 68mulcomd 10656 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑌 / 𝑥𝐵) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
209203, 206, 2083eqtr3d 2867 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
210209negeqd 10874 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
211200, 210eqtr3d 2861 . . . . . . . . . 10 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
212211oveq1d 7161 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
21367recnd 10663 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℂ)
214213, 198negsubdid 11006 . . . . . . . . 9 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
215212, 214eqtr4d 2862 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴))
216213, 198negsubdi2d 11007 . . . . . . . 8 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
217199, 215, 2163eqtrd 2863 . . . . . . 7 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
218195, 217breqtrrd 5081 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)))
21951, 64, 43, 218lesubd 11238 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
220 flle 13171 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
22113, 220syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
22213, 15subge0d 11224 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 − (⌊‘𝑋)) ↔ (⌊‘𝑋) ≤ 𝑋))
223221, 222mpbird 260 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
22445breq2d 5065 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵))
225182ralrimiva 3177 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
226224, 225, 188rspcdva 3611 . . . . . . 7 (𝜑𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵)
22731, 47, 44, 223, 226lemul2ad 11574 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
22864, 48, 51, 227lesub1dd 11250 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
22943, 65, 52, 219, 228letrd 10791 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
23043, 52, 63, 229leadd1dd 11248 . . 3 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
231 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
232 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
233 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
234 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
235 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
2361, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 4, 145, 186, 150, 235dvfsumlem1 24627 . . 3 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
23713leidd 11200 . . . 4 (𝜑𝑋𝑋)
238184, 185, 233, 186, 150xrletrd 12550 . . . 4 (𝜑𝑋𝑈)
239 fllep1 13173 . . . . 5 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
24013, 239syl 17 . . . 4 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
2411, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 6, 145, 237, 238, 240dvfsumlem1 24627 . . 3 (𝜑 → (𝐻𝑋) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
242230, 236, 2413brtr4d 5085 . 2 (𝜑 → (𝐻𝑌) ≤ (𝐻𝑋))
24352, 47resubcld 11062 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
24443, 31resubcld 11062 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) ∈ ℝ)
245 peano2rem 10947 . . . . . . . . . . 11 ((𝑋 − (⌊‘𝑋)) ∈ ℝ → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
24644, 245syl 17 . . . . . . . . . 10 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
247246, 47remulcld 10665 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
248247, 51resubcld 11062 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
249 peano2rem 10947 . . . . . . . . . . 11 ((𝑌 − (⌊‘𝑋)) ∈ ℝ → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
25016, 249syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
251250, 47remulcld 10665 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
252251, 42resubcld 11062 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
253250, 31remulcld 10665 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ∈ ℝ)
254253, 42resubcld 11062 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
255247recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
256251recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
257255, 256subcld 10991 . . . . . . . . . . . . 13 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) ∈ ℂ)
258257, 198addcomd 10836 . . . . . . . . . . . 12 (𝜑 → (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
259255, 256, 198subsubd 11019 . . . . . . . . . . . 12 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
260198, 256, 255subsub2d 11020 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
261258, 259, 2603eqtr4d 2869 . . . . . . . . . . 11 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
262 1cnd 10630 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
263204, 205, 262nnncan2d 11026 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))))
264263, 202eqtrd 2859 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = (𝑌𝑋))
265264oveq1d 7161 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((𝑌𝑋) · 𝑋 / 𝑥𝐵))
266250recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℂ)
267246recnd 10663 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℂ)
26847recnd 10663 . . . . . . . . . . . . . 14 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
269266, 267, 268subdird 11091 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
270207, 268mulcomd 10656 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
271265, 269, 2703eqtr3d 2867 . . . . . . . . . . . 12 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
272271oveq2d 7162 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
273261, 272eqtrd 2859 . . . . . . . . . 10 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
27447, 66remulcld 10665 . . . . . . . . . . 11 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
275 cncfmptc 23515 . . . . . . . . . . . . . . 15 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27647, 82, 83, 275syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
277 remulcl 10616 . . . . . . . . . . . . . 14 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 / 𝑥𝐵 · 𝑦) ∈ ℝ)
27872, 73, 276, 87, 81, 277cncfmpt2ss 23519 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27991, 95, 96, 104, 268dvmptcmul 24565 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)))
280268mulid1d 10652 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 / 𝑥𝐵 · 1) = 𝑋 / 𝑥𝐵)
281280mpteq2dv 5149 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
282279, 281eqtrd 2859 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
2836adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑆)
284144rexrd 10685 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ*)
285185adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 ∈ ℝ*)
286233adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑈 ∈ ℝ*)
287284, 285, 286, 149, 151xrletrd 12550 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑈)
288 vex 3483 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
289 eleq1 2903 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑆𝑦𝑆))
290289anbi2d 631 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝑋𝑆𝑘𝑆) ↔ (𝑋𝑆𝑦𝑆)))
291 breq2 5057 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑋𝑘𝑋𝑦))
292 breq1 5056 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
293291, 2923anbi23d 1436 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝐷𝑋𝑋𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑦𝑦𝑈)))
294290, 2933anbi23d 1436 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈))))
295 csbeq1 3869 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦𝑘 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
296160, 295syl5eqr 2873 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑥𝐵)
297296breq1d 5063 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐶𝑋 / 𝑥𝐵𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵))
298294, 297imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)))
299 simp2l 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝑋𝑆)
300 nfv 1916 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))
301 nfcsb1v 3890 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑋 / 𝑥𝐵
302166, 167, 301nfbr 5100 . . . . . . . . . . . . . . . . . . 19 𝑥 𝐶𝑋 / 𝑥𝐵
303300, 302nfim 1898 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
304 eleq1 2903 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
305304anbi1d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝑥𝑆𝑘𝑆) ↔ (𝑋𝑆𝑘𝑆)))
306 breq2 5057 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
307 breq1 5056 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑘𝑋𝑘))
308306, 3073anbi12d 1434 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑘𝑘𝑈)))
309305, 3083anbi23d 1436 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))))
310 csbeq1a 3880 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
311310breq2d 5065 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐶𝐵𝐶𝑋 / 𝑥𝐵))
312309, 311imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)))
313303, 312, 178vtoclg1f 3552 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵))
314299, 313mpcom 38 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
315288, 298, 314vtocl 3545 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
316135, 283, 136, 146, 147, 287, 315syl123anc 1384 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
317134, 316sylan2 595 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
318 oveq2 7154 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑋))
319 oveq2 7154 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑌))
32013, 5, 126, 133, 278, 282, 317, 188, 190, 186, 49, 318, 33, 319dvle 24608 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
321268, 69, 70subdid 11090 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
322320, 321breqtrrd 5081 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
32342, 51, 274, 322subled 11237 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))) ≤ 𝑋 / 𝑥𝐴)
324273, 323eqbrtrd 5075 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) ≤ 𝑋 / 𝑥𝐴)
325247, 252, 51, 324subled 11237 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
326250renegcld 11061 . . . . . . . . . . . 12 (𝜑 → -((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
327 1red 10636 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
3285, 15, 327lesubadd2d 11233 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑋)) ≤ 1 ↔ 𝑌 ≤ ((⌊‘𝑋) + 1)))
329235, 328mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ≤ 1)
33016, 327suble0d 11225 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ (𝑌 − (⌊‘𝑋)) ≤ 1))
331329, 330mpbird 260 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ≤ 0)
332250le0neg1d 11205 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1)))
333331, 332mpbid 235 . . . . . . . . . . . 12 (𝜑 → 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1))
33431, 47, 326, 333, 226lemul2ad 11574 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
335266, 68mulneg1d 11087 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
336266, 268mulneg1d 11087 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
337334, 335, 3363brtr3d 5084 . . . . . . . . . 10 (𝜑 → -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
338251, 253lenegd 11213 . . . . . . . . . 10 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ↔ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
339337, 338mpbird 260 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
340251, 253, 42, 339lesub1dd 11250 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
341248, 252, 254, 325, 340letrd 10791 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
342205, 262, 268subdird 11091 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)))
343268mulid2d 10653 . . . . . . . . . 10 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
344343oveq2d 7162 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
345342, 344eqtrd 2859 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
346345oveq1d 7161 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
347204, 262, 68subdird 11091 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
34868mulid2d 10653 . . . . . . . . . 10 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
349348oveq2d 7162 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
350347, 349eqtrd 2859 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
351350oveq1d 7161 . . . . . . 7 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
352341, 346, 3513brtr3d 5084 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
35348recnd 10663 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
35451recnd 10663 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
355353, 354, 268sub32d 11023 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
356197, 198, 68sub32d 11023 . . . . . 6 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
357352, 355, 3563brtr4d 5085 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵))
358243, 244, 63, 357leadd1dd 11248 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
35952recnd 10663 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℂ)
36063recnd 10663 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
361359, 360, 268addsubd 11012 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
36243recnd 10663 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℂ)
363362, 360, 68addsubd 11012 . . . 4 (𝜑 → (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
364358, 361, 3633brtr4d 5085 . . 3 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
365241oveq1d 7161 . . 3 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵))
366236oveq1d 7161 . . 3 (𝜑 → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
367364, 365, 3663brtr4d 5085 . 2 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
368242, 367jca 515 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  csb 3866  wss 3919  {cpr 4552   class class class wbr 5053  cmpt 5133  dom cdm 5543  ran crn 5544  cres 5545  wf 6340  cfv 6344  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cmin 10864  -cneg 10865  cz 11976  cuz 12238  (,)cioo 12733  [,]cicc 12736  ...cfz 12892  cfl 13162  Σcsu 15040  TopOpenctopn 16693  topGenctg 16709  fldccnfld 20540  cnccncf 23479   D cdv 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-clim 14843  df-sum 15041  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-mulg 18223  df-cntz 18445  df-cmn 18906  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468
This theorem is referenced by:  dvfsumlem3  24629
  Copyright terms: Public domain W3C validator