MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem2 Structured version   Visualization version   GIF version

Theorem dvfsumlem2 24630
Description: Lemma for dvfsumrlim 24634. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s 𝑆 = (𝑇(,)+∞)
dvfsum.z 𝑍 = (ℤ𝑀)
dvfsum.m (𝜑𝑀 ∈ ℤ)
dvfsum.d (𝜑𝐷 ∈ ℝ)
dvfsum.md (𝜑𝑀 ≤ (𝐷 + 1))
dvfsum.t (𝜑𝑇 ∈ ℝ)
dvfsum.a ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
dvfsum.b1 ((𝜑𝑥𝑆) → 𝐵𝑉)
dvfsum.b2 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
dvfsum.b3 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
dvfsum.c (𝑥 = 𝑘𝐵 = 𝐶)
dvfsum.u (𝜑𝑈 ∈ ℝ*)
dvfsum.l ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
dvfsum.h 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
dvfsumlem1.1 (𝜑𝑋𝑆)
dvfsumlem1.2 (𝜑𝑌𝑆)
dvfsumlem1.3 (𝜑𝐷𝑋)
dvfsumlem1.4 (𝜑𝑋𝑌)
dvfsumlem1.5 (𝜑𝑌𝑈)
dvfsumlem1.6 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
Assertion
Ref Expression
dvfsumlem2 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Distinct variable groups:   𝐵,𝑘   𝑥,𝐶   𝑥,𝑘,𝐷   𝜑,𝑘,𝑥   𝑆,𝑘,𝑥   𝑘,𝑀,𝑥   𝑥,𝑇   𝑘,𝑌,𝑥   𝑥,𝑍   𝑈,𝑘,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥)   𝐶(𝑘)   𝑇(𝑘)   𝐻(𝑥,𝑘)   𝑉(𝑥,𝑘)   𝑍(𝑘)

Proof of Theorem dvfsumlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . . . 9 𝑆 = (𝑇(,)+∞)
2 ioossre 12786 . . . . . . . . 9 (𝑇(,)+∞) ⊆ ℝ
31, 2eqsstri 3949 . . . . . . . 8 𝑆 ⊆ ℝ
4 dvfsumlem1.2 . . . . . . . 8 (𝜑𝑌𝑆)
53, 4sseldi 3913 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
6 dvfsumlem1.1 . . . . . . . . . . 11 (𝜑𝑋𝑆)
76, 1eleqtrdi 2900 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑇(,)+∞))
8 dvfsum.t . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℝ)
98rexrd 10680 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℝ*)
10 elioopnf 12821 . . . . . . . . . . 11 (𝑇 ∈ ℝ* → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑇(,)+∞) ↔ (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋)))
127, 11mpbid 235 . . . . . . . . 9 (𝜑 → (𝑋 ∈ ℝ ∧ 𝑇 < 𝑋))
1312simpld 498 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
14 reflcl 13161 . . . . . . . 8 (𝑋 ∈ ℝ → (⌊‘𝑋) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 (𝜑 → (⌊‘𝑋) ∈ ℝ)
165, 15resubcld 11057 . . . . . 6 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℝ)
17 csbeq1 3831 . . . . . . . 8 (𝑦 = 𝑌𝑦 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
1817eleq1d 2874 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑌 / 𝑥𝐵 ∈ ℝ))
193a1i 11 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℝ)
20 dvfsum.a . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
21 dvfsum.b1 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝐵𝑉)
22 dvfsum.b3 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥𝑆𝐴)) = (𝑥𝑆𝐵))
2319, 20, 21, 22dvmptrecl 24627 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝐵 ∈ ℝ)
2423fmpttd 6856 . . . . . . . 8 (𝜑 → (𝑥𝑆𝐵):𝑆⟶ℝ)
25 nfcv 2955 . . . . . . . . . 10 𝑦𝐵
26 nfcsb1v 3852 . . . . . . . . . 10 𝑥𝑦 / 𝑥𝐵
27 csbeq1a 3842 . . . . . . . . . 10 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
2825, 26, 27cbvmpt 5131 . . . . . . . . 9 (𝑥𝑆𝐵) = (𝑦𝑆𝑦 / 𝑥𝐵)
2928fmpt 6851 . . . . . . . 8 (∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ ↔ (𝑥𝑆𝐵):𝑆⟶ℝ)
3024, 29sylibr 237 . . . . . . 7 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐵 ∈ ℝ)
3118, 30, 4rspcdva 3573 . . . . . 6 (𝜑𝑌 / 𝑥𝐵 ∈ ℝ)
3216, 31remulcld 10660 . . . . 5 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
33 csbeq1 3831 . . . . . . 7 (𝑦 = 𝑌𝑦 / 𝑥𝐴 = 𝑌 / 𝑥𝐴)
3433eleq1d 2874 . . . . . 6 (𝑦 = 𝑌 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑌 / 𝑥𝐴 ∈ ℝ))
3520fmpttd 6856 . . . . . . 7 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℝ)
36 nfcv 2955 . . . . . . . . 9 𝑦𝐴
37 nfcsb1v 3852 . . . . . . . . 9 𝑥𝑦 / 𝑥𝐴
38 csbeq1a 3842 . . . . . . . . 9 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
3936, 37, 38cbvmpt 5131 . . . . . . . 8 (𝑥𝑆𝐴) = (𝑦𝑆𝑦 / 𝑥𝐴)
4039fmpt 6851 . . . . . . 7 (∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ ↔ (𝑥𝑆𝐴):𝑆⟶ℝ)
4135, 40sylibr 237 . . . . . 6 (𝜑 → ∀𝑦𝑆 𝑦 / 𝑥𝐴 ∈ ℝ)
4234, 41, 4rspcdva 3573 . . . . 5 (𝜑𝑌 / 𝑥𝐴 ∈ ℝ)
4332, 42resubcld 11057 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
4413, 15resubcld 11057 . . . . . 6 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℝ)
45 csbeq1 3831 . . . . . . . 8 (𝑦 = 𝑋𝑦 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
4645eleq1d 2874 . . . . . . 7 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐵 ∈ ℝ ↔ 𝑋 / 𝑥𝐵 ∈ ℝ))
4746, 30, 6rspcdva 3573 . . . . . 6 (𝜑𝑋 / 𝑥𝐵 ∈ ℝ)
4844, 47remulcld 10660 . . . . 5 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℝ)
49 csbeq1 3831 . . . . . . 7 (𝑦 = 𝑋𝑦 / 𝑥𝐴 = 𝑋 / 𝑥𝐴)
5049eleq1d 2874 . . . . . 6 (𝑦 = 𝑋 → (𝑦 / 𝑥𝐴 ∈ ℝ ↔ 𝑋 / 𝑥𝐴 ∈ ℝ))
5150, 41, 6rspcdva 3573 . . . . 5 (𝜑𝑋 / 𝑥𝐴 ∈ ℝ)
5248, 51resubcld 11057 . . . 4 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
53 fzfid 13336 . . . . 5 (𝜑 → (𝑀...(⌊‘𝑋)) ∈ Fin)
54 dvfsum.b2 . . . . . . 7 ((𝜑𝑥𝑍) → 𝐵 ∈ ℝ)
5554ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑥𝑍 𝐵 ∈ ℝ)
56 elfzuz 12898 . . . . . . 7 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘 ∈ (ℤ𝑀))
57 dvfsum.z . . . . . . 7 𝑍 = (ℤ𝑀)
5856, 57eleqtrrdi 2901 . . . . . 6 (𝑘 ∈ (𝑀...(⌊‘𝑋)) → 𝑘𝑍)
59 dvfsum.c . . . . . . . 8 (𝑥 = 𝑘𝐵 = 𝐶)
6059eleq1d 2874 . . . . . . 7 (𝑥 = 𝑘 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
6160rspccva 3570 . . . . . 6 ((∀𝑥𝑍 𝐵 ∈ ℝ ∧ 𝑘𝑍) → 𝐶 ∈ ℝ)
6255, 58, 61syl2an 598 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(⌊‘𝑋))) → 𝐶 ∈ ℝ)
6353, 62fsumrecl 15083 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℝ)
6444, 31remulcld 10660 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℝ)
6564, 51resubcld 11057 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
665, 13resubcld 11057 . . . . . . . . 9 (𝜑 → (𝑌𝑋) ∈ ℝ)
6731, 66remulcld 10660 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
6831recnd 10658 . . . . . . . . . 10 (𝜑𝑌 / 𝑥𝐵 ∈ ℂ)
695recnd 10658 . . . . . . . . . 10 (𝜑𝑌 ∈ ℂ)
7013recnd 10658 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
7168, 69, 70subdid 11085 . . . . . . . . 9 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)))
72 eqid 2798 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7372mulcn 23472 . . . . . . . . . . 11 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
74 pnfxr 10684 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → +∞ ∈ ℝ*)
7612simprd 499 . . . . . . . . . . . . . . 15 (𝜑𝑇 < 𝑋)
775ltpnfd 12504 . . . . . . . . . . . . . . 15 (𝜑𝑌 < +∞)
78 iccssioo 12794 . . . . . . . . . . . . . . 15 (((𝑇 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝑇 < 𝑋𝑌 < +∞)) → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
799, 75, 76, 77, 78syl22anc 837 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ⊆ (𝑇(,)+∞))
8079, 2sstrdi 3927 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
81 ax-resscn 10583 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
8280, 81sstrdi 3927 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ ℂ)
8381a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
84 cncfmptc 23517 . . . . . . . . . . . 12 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8531, 82, 83, 84syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑌 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
86 cncfmptid 23518 . . . . . . . . . . . 12 (((𝑋[,]𝑌) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
8780, 81, 86sylancl 589 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦) ∈ ((𝑋[,]𝑌)–cn→ℝ))
88 remulcl 10611 . . . . . . . . . . 11 ((𝑌 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑌 / 𝑥𝐵 · 𝑦) ∈ ℝ)
8972, 73, 85, 87, 81, 88cncfmpt2ss 23521 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
90 reelprrecn 10618 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
9190a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ {ℝ, ℂ})
92 ioossicc 12811 . . . . . . . . . . . . . . 15 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
9392, 80sstrid 3926 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
9493sselda 3915 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℝ)
9594recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 ∈ ℂ)
96 1cnd 10625 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 1 ∈ ℂ)
97 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
9897recnd 10658 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
99 1cnd 10625 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
10091dvmptid 24560 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
10172tgioo2 23408 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
102 iooretop 23371 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ∈ (topGen‘ran (,))
103102a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ∈ (topGen‘ran (,)))
10491, 98, 99, 100, 93, 101, 72, 103dvmptres 24566 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 1))
10591, 95, 96, 104, 68dvmptcmul 24567 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)))
10668mulid1d 10647 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐵 · 1) = 𝑌 / 𝑥𝐵)
107106mpteq2dv 5126 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
108105, 107eqtrd 2833 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑌 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑌 / 𝑥𝐵))
10979, 1sseqtrrdi 3966 . . . . . . . . . . . 12 (𝜑 → (𝑋[,]𝑌) ⊆ 𝑆)
110109resmptd 5875 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) = (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴))
11120recnd 10658 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝐴 ∈ ℂ)
112111fmpttd 6856 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑆𝐴):𝑆⟶ℂ)
11322dmeqd 5738 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = dom (𝑥𝑆𝐵))
11421ralrimiva 3149 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑆 𝐵𝑉)
115 dmmptg 6063 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝑆 𝐵𝑉 → dom (𝑥𝑆𝐵) = 𝑆)
116114, 115syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom (𝑥𝑆𝐵) = 𝑆)
117113, 116eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝜑 → dom (ℝ D (𝑥𝑆𝐴)) = 𝑆)
118 dvcn 24524 . . . . . . . . . . . . . . . 16 (((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴):𝑆⟶ℂ ∧ 𝑆 ⊆ ℝ) ∧ dom (ℝ D (𝑥𝑆𝐴)) = 𝑆) → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
11983, 112, 19, 117, 118syl31anc 1370 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ))
120 cncffvrn 23503 . . . . . . . . . . . . . . 15 ((ℝ ⊆ ℂ ∧ (𝑥𝑆𝐴) ∈ (𝑆cn→ℂ)) → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12181, 119, 120sylancr 590 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝑆𝐴) ∈ (𝑆cn→ℝ) ↔ (𝑥𝑆𝐴):𝑆⟶ℝ))
12235, 121mpbird 260 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆𝐴) ∈ (𝑆cn→ℝ))
12339, 122eqeltrrid 2895 . . . . . . . . . . . 12 (𝜑 → (𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ))
124 rescncf 23502 . . . . . . . . . . . 12 ((𝑋[,]𝑌) ⊆ 𝑆 → ((𝑦𝑆𝑦 / 𝑥𝐴) ∈ (𝑆cn→ℝ) → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
125109, 123, 124sylc 65 . . . . . . . . . . 11 (𝜑 → ((𝑦𝑆𝑦 / 𝑥𝐴) ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
126110, 125eqeltrrd 2891 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑦 / 𝑥𝐴) ∈ ((𝑋[,]𝑌)–cn→ℝ))
12741r19.21bi 3173 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℝ)
128127recnd 10658 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐴 ∈ ℂ)
12930r19.21bi 3173 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → 𝑦 / 𝑥𝐵 ∈ ℝ)
13039oveq2i 7146 . . . . . . . . . . . 12 (ℝ D (𝑥𝑆𝐴)) = (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴))
13122, 130, 283eqtr3g 2856 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑦𝑆𝑦 / 𝑥𝐴)) = (𝑦𝑆𝑦 / 𝑥𝐵))
13292, 109sstrid 3926 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝑆)
13391, 128, 129, 131, 132, 101, 72, 103dvmptres 24566 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐴)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑦 / 𝑥𝐵))
13492sseli 3911 . . . . . . . . . . 11 (𝑦 ∈ (𝑋(,)𝑌) → 𝑦 ∈ (𝑋[,]𝑌))
135 simpl 486 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝜑)
136109sselda 3915 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑆)
1374adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑆)
138 dvfsum.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ)
139138adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷 ∈ ℝ)
14013adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋 ∈ ℝ)
141 elicc2 12790 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
14213, 5, 141syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↔ (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌)))
143142biimpa 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → (𝑦 ∈ ℝ ∧ 𝑋𝑦𝑦𝑌))
144143simp1d 1139 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ)
145 dvfsumlem1.3 . . . . . . . . . . . . . 14 (𝜑𝐷𝑋)
146145adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑋)
147143simp2d 1140 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑦)
148139, 140, 144, 146, 147letrd 10786 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝐷𝑦)
149143simp3d 1141 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑌)
150 dvfsumlem1.5 . . . . . . . . . . . . 13 (𝜑𝑌𝑈)
151150adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌𝑈)
152 simp2r 1197 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌𝑆)
153 eleq1 2877 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑆𝑌𝑆))
154153anbi2d 631 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝑦𝑆𝑘𝑆) ↔ (𝑦𝑆𝑌𝑆)))
155 breq2 5034 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑦𝑘𝑦𝑌))
156 breq1 5033 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌 → (𝑘𝑈𝑌𝑈))
157155, 1563anbi23d 1436 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌 → ((𝐷𝑦𝑦𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑌𝑌𝑈)))
158154, 1573anbi23d 1436 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈))))
159 vex 3444 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ V
160159, 59csbie 3863 . . . . . . . . . . . . . . . . 17 𝑘 / 𝑥𝐵 = 𝐶
161 csbeq1 3831 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑌𝑘 / 𝑥𝐵 = 𝑌 / 𝑥𝐵)
162160, 161syl5eqr 2847 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑌𝐶 = 𝑌 / 𝑥𝐵)
163162breq1d 5040 . . . . . . . . . . . . . . 15 (𝑘 = 𝑌 → (𝐶𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
164158, 163imbi12d 348 . . . . . . . . . . . . . 14 (𝑘 = 𝑌 → (((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)))
165 nfv 1915 . . . . . . . . . . . . . . . 16 𝑥(𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))
166 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑥𝐶
167 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑥
168166, 167, 26nfbr 5077 . . . . . . . . . . . . . . . 16 𝑥 𝐶𝑦 / 𝑥𝐵
169165, 168nfim 1897 . . . . . . . . . . . . . . 15 𝑥((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
170 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
171170anbi1d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑥𝑆𝑘𝑆) ↔ (𝑦𝑆𝑘𝑆)))
172 breq2 5034 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐷𝑥𝐷𝑦))
173 breq1 5033 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥𝑘𝑦𝑘))
174172, 1733anbi12d 1434 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑦𝑦𝑘𝑘𝑈)))
175171, 1743anbi23d 1436 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈))))
17627breq2d 5042 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐶𝐵𝐶𝑦 / 𝑥𝐵))
177175, 176imbi12d 348 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)))
178 dvfsum.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵)
179169, 177, 178chvarfv 2240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑆𝑘𝑆) ∧ (𝐷𝑦𝑦𝑘𝑘𝑈)) → 𝐶𝑦 / 𝑥𝐵)
180164, 179vtoclg 3515 . . . . . . . . . . . . 13 (𝑌𝑆 → ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵))
181152, 180mpcom 38 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑆𝑌𝑆) ∧ (𝐷𝑦𝑦𝑌𝑌𝑈)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
182135, 136, 137, 148, 149, 151, 181syl123anc 1384 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
183134, 182sylan2 595 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
18413rexrd 10680 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ*)
1855rexrd 10680 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ*)
186 dvfsumlem1.4 . . . . . . . . . . 11 (𝜑𝑋𝑌)
187 lbicc2 12842 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
188184, 185, 186, 187syl3anc 1368 . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑋[,]𝑌))
189 ubicc2 12843 . . . . . . . . . . 11 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
190184, 185, 186, 189syl3anc 1368 . . . . . . . . . 10 (𝜑𝑌 ∈ (𝑋[,]𝑌))
191 oveq2 7143 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑋))
192 oveq2 7143 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑌 / 𝑥𝐵 · 𝑦) = (𝑌 / 𝑥𝐵 · 𝑌))
19313, 5, 89, 108, 126, 133, 183, 188, 190, 186, 191, 49, 192, 33dvle 24610 . . . . . . . . 9 (𝜑 → ((𝑌 / 𝑥𝐵 · 𝑌) − (𝑌 / 𝑥𝐵 · 𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19471, 193eqbrtrd 5052 . . . . . . . 8 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ≤ (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴))
19567, 42, 51, 194lesubd 11233 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ≤ (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
19664recnd 10658 . . . . . . . . 9 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19732recnd 10658 . . . . . . . . 9 (𝜑 → ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ∈ ℂ)
19842recnd 10658 . . . . . . . . 9 (𝜑𝑌 / 𝑥𝐴 ∈ ℂ)
199196, 197, 198subsubd 11014 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
200197, 196negsubdi2d 11002 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20115recnd 10658 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘𝑋) ∈ ℂ)
20269, 70, 201nnncan2d 11021 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) = (𝑌𝑋))
203202oveq1d 7150 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = ((𝑌𝑋) · 𝑌 / 𝑥𝐵))
20416recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ∈ ℂ)
20544recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 − (⌊‘𝑋)) ∈ ℂ)
206204, 205, 68subdird 11086 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)))
20766recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (𝑌𝑋) ∈ ℂ)
208207, 68mulcomd 10651 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑌 / 𝑥𝐵) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
209203, 206, 2083eqtr3d 2841 . . . . . . . . . . . 12 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = (𝑌 / 𝑥𝐵 · (𝑌𝑋)))
210209negeqd 10869 . . . . . . . . . . 11 (𝜑 → -(((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
211200, 210eqtr3d 2835 . . . . . . . . . 10 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) = -(𝑌 / 𝑥𝐵 · (𝑌𝑋)))
212211oveq1d 7150 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
21367recnd 10658 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℂ)
214213, 198negsubdid 11001 . . . . . . . . 9 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (-(𝑌 / 𝑥𝐵 · (𝑌𝑋)) + 𝑌 / 𝑥𝐴))
215212, 214eqtr4d 2836 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − ((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴))
216213, 198negsubdi2d 11002 . . . . . . . 8 (𝜑 → -((𝑌 / 𝑥𝐵 · (𝑌𝑋)) − 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
217199, 215, 2163eqtrd 2837 . . . . . . 7 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑌 / 𝑥𝐵 · (𝑌𝑋))))
218195, 217breqtrrd 5058 . . . . . 6 (𝜑𝑋 / 𝑥𝐴 ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)))
21951, 64, 43, 218lesubd 11233 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
220 flle 13164 . . . . . . . . 9 (𝑋 ∈ ℝ → (⌊‘𝑋) ≤ 𝑋)
22113, 220syl 17 . . . . . . . 8 (𝜑 → (⌊‘𝑋) ≤ 𝑋)
22213, 15subge0d 11219 . . . . . . . 8 (𝜑 → (0 ≤ (𝑋 − (⌊‘𝑋)) ↔ (⌊‘𝑋) ≤ 𝑋))
223221, 222mpbird 260 . . . . . . 7 (𝜑 → 0 ≤ (𝑋 − (⌊‘𝑋)))
22445breq2d 5042 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵))
225182ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (𝑋[,]𝑌)𝑌 / 𝑥𝐵𝑦 / 𝑥𝐵)
226224, 225, 188rspcdva 3573 . . . . . . 7 (𝜑𝑌 / 𝑥𝐵𝑋 / 𝑥𝐵)
22731, 47, 44, 223, 226lemul2ad 11569 . . . . . 6 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) ≤ ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵))
22864, 48, 51, 227lesub1dd 11245 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
22943, 65, 52, 219, 228letrd 10786 . . . 4 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
23043, 52, 63, 229leadd1dd 11243 . . 3 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
231 dvfsum.m . . . 4 (𝜑𝑀 ∈ ℤ)
232 dvfsum.md . . . 4 (𝜑𝑀 ≤ (𝐷 + 1))
233 dvfsum.u . . . 4 (𝜑𝑈 ∈ ℝ*)
234 dvfsum.h . . . 4 𝐻 = (𝑥𝑆 ↦ (((𝑥 − (⌊‘𝑥)) · 𝐵) + (Σ𝑘 ∈ (𝑀...(⌊‘𝑥))𝐶𝐴)))
235 dvfsumlem1.6 . . . 4 (𝜑𝑌 ≤ ((⌊‘𝑋) + 1))
2361, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 4, 145, 186, 150, 235dvfsumlem1 24629 . . 3 (𝜑 → (𝐻𝑌) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
23713leidd 11195 . . . 4 (𝜑𝑋𝑋)
238184, 185, 233, 186, 150xrletrd 12543 . . . 4 (𝜑𝑋𝑈)
239 fllep1 13166 . . . . 5 (𝑋 ∈ ℝ → 𝑋 ≤ ((⌊‘𝑋) + 1))
24013, 239syl 17 . . . 4 (𝜑𝑋 ≤ ((⌊‘𝑋) + 1))
2411, 57, 231, 138, 232, 8, 20, 21, 54, 22, 59, 233, 178, 234, 6, 6, 145, 237, 238, 240dvfsumlem1 24629 . . 3 (𝜑 → (𝐻𝑋) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
242230, 236, 2413brtr4d 5062 . 2 (𝜑 → (𝐻𝑌) ≤ (𝐻𝑋))
24352, 47resubcld 11057 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ∈ ℝ)
24443, 31resubcld 11057 . . . . 5 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) ∈ ℝ)
245 peano2rem 10942 . . . . . . . . . . 11 ((𝑋 − (⌊‘𝑋)) ∈ ℝ → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
24644, 245syl 17 . . . . . . . . . 10 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℝ)
247246, 47remulcld 10660 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
248247, 51resubcld 11057 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℝ)
249 peano2rem 10942 . . . . . . . . . . 11 ((𝑌 − (⌊‘𝑋)) ∈ ℝ → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
25016, 249syl 17 . . . . . . . . . 10 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
251250, 47remulcld 10660 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℝ)
252251, 42resubcld 11057 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
253250, 31remulcld 10660 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ∈ ℝ)
254253, 42resubcld 11057 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℝ)
255247recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
256251recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ∈ ℂ)
257255, 256subcld 10986 . . . . . . . . . . . . 13 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) ∈ ℂ)
258257, 198addcomd 10831 . . . . . . . . . . . 12 (𝜑 → (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
259255, 256, 198subsubd 11014 . . . . . . . . . . . 12 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) + 𝑌 / 𝑥𝐴))
260198, 256, 255subsub2d 11015 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 + ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
261258, 259, 2603eqtr4d 2843 . . . . . . . . . . 11 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))))
262 1cnd 10625 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
263204, 205, 262nnncan2d 11021 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = ((𝑌 − (⌊‘𝑋)) − (𝑋 − (⌊‘𝑋))))
264263, 202eqtrd 2833 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) = (𝑌𝑋))
265264oveq1d 7150 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((𝑌𝑋) · 𝑋 / 𝑥𝐵))
266250recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ∈ ℂ)
267246recnd 10658 . . . . . . . . . . . . . 14 (𝜑 → ((𝑋 − (⌊‘𝑋)) − 1) ∈ ℂ)
26847recnd 10658 . . . . . . . . . . . . . 14 (𝜑𝑋 / 𝑥𝐵 ∈ ℂ)
269266, 267, 268subdird 11086 . . . . . . . . . . . . 13 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) − ((𝑋 − (⌊‘𝑋)) − 1)) · 𝑋 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
270207, 268mulcomd 10651 . . . . . . . . . . . . 13 (𝜑 → ((𝑌𝑋) · 𝑋 / 𝑥𝐵) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
271265, 269, 2703eqtr3d 2841 . . . . . . . . . . . 12 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)) = (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
272271oveq2d 7151 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴 − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
273261, 272eqtrd 2833 . . . . . . . . . 10 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) = (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))))
27447, 66remulcld 10660 . . . . . . . . . . 11 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) ∈ ℝ)
275 cncfmptc 23517 . . . . . . . . . . . . . . 15 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ (𝑋[,]𝑌) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27647, 82, 83, 275syl3anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ 𝑋 / 𝑥𝐵) ∈ ((𝑋[,]𝑌)–cn→ℝ))
277 remulcl 10611 . . . . . . . . . . . . . 14 ((𝑋 / 𝑥𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑋 / 𝑥𝐵 · 𝑦) ∈ ℝ)
27872, 73, 276, 87, 81, 277cncfmpt2ss 23521 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ (𝑋[,]𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
27991, 95, 96, 104, 268dvmptcmul 24567 . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)))
280268mulid1d 10647 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 / 𝑥𝐵 · 1) = 𝑋 / 𝑥𝐵)
281280mpteq2dv 5126 . . . . . . . . . . . . . 14 (𝜑 → (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 1)) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
282279, 281eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑦 ∈ (𝑋(,)𝑌) ↦ (𝑋 / 𝑥𝐵 · 𝑦))) = (𝑦 ∈ (𝑋(,)𝑌) ↦ 𝑋 / 𝑥𝐵))
2836adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑋𝑆)
284144rexrd 10680 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 ∈ ℝ*)
285185adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑌 ∈ ℝ*)
286233adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑈 ∈ ℝ*)
287284, 285, 286, 149, 151xrletrd 12543 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦𝑈)
288 vex 3444 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
289 eleq1 2877 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑆𝑦𝑆))
290289anbi2d 631 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝑋𝑆𝑘𝑆) ↔ (𝑋𝑆𝑦𝑆)))
291 breq2 5034 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑋𝑘𝑋𝑦))
292 breq1 5033 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘𝑈𝑦𝑈))
293291, 2923anbi23d 1436 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝐷𝑋𝑋𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑦𝑦𝑈)))
294290, 2933anbi23d 1436 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈))))
295 csbeq1 3831 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦𝑘 / 𝑥𝐵 = 𝑦 / 𝑥𝐵)
296160, 295syl5eqr 2847 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑥𝐵)
297296breq1d 5040 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝐶𝑋 / 𝑥𝐵𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵))
298294, 297imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)))
299 simp2l 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝑋𝑆)
300 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))
301 nfcsb1v 3852 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑋 / 𝑥𝐵
302166, 167, 301nfbr 5077 . . . . . . . . . . . . . . . . . . 19 𝑥 𝐶𝑋 / 𝑥𝐵
303300, 302nfim 1897 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
304 eleq1 2877 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑆𝑋𝑆))
305304anbi1d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝑥𝑆𝑘𝑆) ↔ (𝑋𝑆𝑘𝑆)))
306 breq2 5034 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝐷𝑥𝐷𝑋))
307 breq1 5033 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑋 → (𝑥𝑘𝑋𝑘))
308306, 3073anbi12d 1434 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → ((𝐷𝑥𝑥𝑘𝑘𝑈) ↔ (𝐷𝑋𝑋𝑘𝑘𝑈)))
309305, 3083anbi23d 1436 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) ↔ (𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈))))
310 csbeq1a 3842 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝐵 = 𝑋 / 𝑥𝐵)
311310breq2d 5042 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐶𝐵𝐶𝑋 / 𝑥𝐵))
312309, 311imbi12d 348 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (((𝜑 ∧ (𝑥𝑆𝑘𝑆) ∧ (𝐷𝑥𝑥𝑘𝑘𝑈)) → 𝐶𝐵) ↔ ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)))
313303, 312, 178vtoclg1f 3514 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵))
314299, 313mpcom 38 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑋𝑆𝑘𝑆) ∧ (𝐷𝑋𝑋𝑘𝑘𝑈)) → 𝐶𝑋 / 𝑥𝐵)
315288, 298, 314vtocl 3507 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑋𝑆𝑦𝑆) ∧ (𝐷𝑋𝑋𝑦𝑦𝑈)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
316135, 283, 136, 146, 147, 287, 315syl123anc 1384 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝑋[,]𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
317134, 316sylan2 595 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 𝑦 / 𝑥𝐵𝑋 / 𝑥𝐵)
318 oveq2 7143 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑋))
319 oveq2 7143 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → (𝑋 / 𝑥𝐵 · 𝑦) = (𝑋 / 𝑥𝐵 · 𝑌))
32013, 5, 126, 133, 278, 282, 317, 188, 190, 186, 49, 318, 33, 319dvle 24610 . . . . . . . . . . . 12 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
321268, 69, 70subdid 11085 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 𝑥𝐵 · (𝑌𝑋)) = ((𝑋 / 𝑥𝐵 · 𝑌) − (𝑋 / 𝑥𝐵 · 𝑋)))
322320, 321breqtrrd 5058 . . . . . . . . . . 11 (𝜑 → (𝑌 / 𝑥𝐴𝑋 / 𝑥𝐴) ≤ (𝑋 / 𝑥𝐵 · (𝑌𝑋)))
32342, 51, 274, 322subled 11232 . . . . . . . . . 10 (𝜑 → (𝑌 / 𝑥𝐴 − (𝑋 / 𝑥𝐵 · (𝑌𝑋))) ≤ 𝑋 / 𝑥𝐴)
324273, 323eqbrtrd 5052 . . . . . . . . 9 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴)) ≤ 𝑋 / 𝑥𝐴)
325247, 252, 51, 324subled 11232 . . . . . . . 8 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
326250renegcld 11056 . . . . . . . . . . . 12 (𝜑 → -((𝑌 − (⌊‘𝑋)) − 1) ∈ ℝ)
327 1red 10631 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
3285, 15, 327lesubadd2d 11228 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (⌊‘𝑋)) ≤ 1 ↔ 𝑌 ≤ ((⌊‘𝑋) + 1)))
329235, 328mpbird 260 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 − (⌊‘𝑋)) ≤ 1)
33016, 327suble0d 11220 . . . . . . . . . . . . . 14 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ (𝑌 − (⌊‘𝑋)) ≤ 1))
331329, 330mpbird 260 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 − (⌊‘𝑋)) − 1) ≤ 0)
332250le0neg1d 11200 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) ≤ 0 ↔ 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1)))
333331, 332mpbid 235 . . . . . . . . . . . 12 (𝜑 → 0 ≤ -((𝑌 − (⌊‘𝑋)) − 1))
33431, 47, 326, 333, 226lemul2ad 11569 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
335266, 68mulneg1d 11082 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
336266, 268mulneg1d 11082 . . . . . . . . . . 11 (𝜑 → (-((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
337334, 335, 3363brtr3d 5061 . . . . . . . . . 10 (𝜑 → -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵))
338251, 253lenegd 11208 . . . . . . . . . 10 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ↔ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) ≤ -(((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵)))
339337, 338mpbird 260 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) ≤ (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵))
340251, 253, 42, 339lesub1dd 11245 . . . . . . . 8 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
341248, 252, 254, 325, 340letrd 10786 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
342205, 262, 268subdird 11086 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)))
343268mulid2d 10648 . . . . . . . . . 10 (𝜑 → (1 · 𝑋 / 𝑥𝐵) = 𝑋 / 𝑥𝐵)
344343oveq2d 7151 . . . . . . . . 9 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − (1 · 𝑋 / 𝑥𝐵)) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
345342, 344eqtrd 2833 . . . . . . . 8 (𝜑 → (((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) = (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵))
346345oveq1d 7150 . . . . . . 7 (𝜑 → ((((𝑋 − (⌊‘𝑋)) − 1) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
347204, 262, 68subdird 11086 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)))
34868mulid2d 10648 . . . . . . . . . 10 (𝜑 → (1 · 𝑌 / 𝑥𝐵) = 𝑌 / 𝑥𝐵)
349348oveq2d 7151 . . . . . . . . 9 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − (1 · 𝑌 / 𝑥𝐵)) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
350347, 349eqtrd 2833 . . . . . . . 8 (𝜑 → (((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) = (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵))
351350oveq1d 7150 . . . . . . 7 (𝜑 → ((((𝑌 − (⌊‘𝑋)) − 1) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
352341, 346, 3513brtr3d 5061 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
35348recnd 10658 . . . . . . 7 (𝜑 → ((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) ∈ ℂ)
35451recnd 10658 . . . . . . 7 (𝜑𝑋 / 𝑥𝐴 ∈ ℂ)
355353, 354, 268sub32d 11018 . . . . . 6 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) = ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴))
356197, 198, 68sub32d 11018 . . . . . 6 (𝜑 → ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) = ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴))
357352, 355, 3563brtr4d 5062 . . . . 5 (𝜑 → ((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) ≤ ((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵))
358243, 244, 63, 357leadd1dd 11243 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
35952recnd 10658 . . . . 5 (𝜑 → (((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) ∈ ℂ)
36063recnd 10658 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶 ∈ ℂ)
361359, 360, 268addsubd 11007 . . . 4 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) − 𝑋 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
36243recnd 10658 . . . . 5 (𝜑 → (((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) ∈ ℂ)
363362, 360, 68addsubd 11007 . . . 4 (𝜑 → (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) − 𝑌 / 𝑥𝐵) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶))
364358, 361, 3633brtr4d 5062 . . 3 (𝜑 → (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵) ≤ (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
365241oveq1d 7150 . . 3 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) = (((((𝑋 − (⌊‘𝑋)) · 𝑋 / 𝑥𝐵) − 𝑋 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑋 / 𝑥𝐵))
366236oveq1d 7150 . . 3 (𝜑 → ((𝐻𝑌) − 𝑌 / 𝑥𝐵) = (((((𝑌 − (⌊‘𝑋)) · 𝑌 / 𝑥𝐵) − 𝑌 / 𝑥𝐴) + Σ𝑘 ∈ (𝑀...(⌊‘𝑋))𝐶) − 𝑌 / 𝑥𝐵))
367364, 365, 3663brtr4d 5062 . 2 (𝜑 → ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵))
368242, 367jca 515 1 (𝜑 → ((𝐻𝑌) ≤ (𝐻𝑋) ∧ ((𝐻𝑋) − 𝑋 / 𝑥𝐵) ≤ ((𝐻𝑌) − 𝑌 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  csb 3828  wss 3881  {cpr 4527   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cz 11969  cuz 12231  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  cfl 13155  Σcsu 15034  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  cnccncf 23481   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvfsumlem3  24631
  Copyright terms: Public domain W3C validator