Proof of Theorem cdlemg8c
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp22 1208 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 3 | | simp21 1207 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 4 | | simp23 1209 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → 𝐹 ∈ 𝑇) |
| 5 | | simp31 1210 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → 𝐺 ∈ 𝑇) |
| 6 | | simp32 1211 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) |
| 7 | | simp1l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → 𝐾 ∈ HL) |
| 8 | | cdlemg8.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 9 | | cdlemg8.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 10 | | cdlemg8.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
| 11 | | cdlemg8.t |
. . . . . . . 8
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 12 | 8, 9, 10, 11 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 13 | 1, 5, 3, 12 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
| 14 | 8, 9, 10, 11 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑃)) ≤ 𝑊)) |
| 15 | 14 | simpld 494 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
| 16 | 1, 4, 13, 15 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺‘𝑃)) ∈ 𝐴) |
| 17 | 8, 9, 10, 11 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐺‘𝑄) ∈ 𝐴 ∧ ¬ (𝐺‘𝑄) ≤ 𝑊)) |
| 18 | 1, 5, 2, 17 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐺‘𝑄) ∈ 𝐴 ∧ ¬ (𝐺‘𝑄) ≤ 𝑊)) |
| 19 | 8, 9, 10, 11 | ltrnel 40141 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑄) ∈ 𝐴 ∧ ¬ (𝐺‘𝑄) ≤ 𝑊)) → ((𝐹‘(𝐺‘𝑄)) ∈ 𝐴 ∧ ¬ (𝐹‘(𝐺‘𝑄)) ≤ 𝑊)) |
| 20 | 19 | simpld 494 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑄) ∈ 𝐴 ∧ ¬ (𝐺‘𝑄) ≤ 𝑊)) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
| 21 | 1, 4, 18, 20 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) |
| 22 | | cdlemg8.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 23 | 22, 9 | hlatjcom 39369 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐹‘(𝐺‘𝑃)) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑄)) ∈ 𝐴) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘(𝐺‘𝑄)) ∨ (𝐹‘(𝐺‘𝑃)))) |
| 24 | 7, 16, 21, 23 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘(𝐺‘𝑄)) ∨ (𝐹‘(𝐺‘𝑃)))) |
| 25 | | simp21l 1291 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → 𝑃 ∈ 𝐴) |
| 26 | | simp22l 1293 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → 𝑄 ∈ 𝐴) |
| 27 | 22, 9 | hlatjcom 39369 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 28 | 7, 25, 26, 27 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 29 | 6, 24, 28 | 3eqtr3d 2785 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺‘𝑄)) ∨ (𝐹‘(𝐺‘𝑃))) = (𝑄 ∨ 𝑃)) |
| 30 | | simp33 1212 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺‘𝑃)) ≠ 𝑃) |
| 31 | | simpl1 1192 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | | simpl22 1253 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 33 | | simpl21 1252 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 34 | | simpl23 1254 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → 𝐹 ∈ 𝑇) |
| 35 | | simpl31 1255 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → 𝐺 ∈ 𝑇) |
| 36 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |
| 37 | 8, 9, 10, 11 | cdlemg6 40625 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄)) → (𝐹‘(𝐺‘𝑃)) = 𝑃) |
| 38 | 31, 32, 33, 34, 35, 36, 37 | syl123anc 1389 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) ∧ (𝐹‘(𝐺‘𝑄)) = 𝑄) → (𝐹‘(𝐺‘𝑃)) = 𝑃) |
| 39 | 38 | ex 412 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺‘𝑄)) = 𝑄 → (𝐹‘(𝐺‘𝑃)) = 𝑃)) |
| 40 | 39 | necon3d 2961 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → ((𝐹‘(𝐺‘𝑃)) ≠ 𝑃 → (𝐹‘(𝐺‘𝑄)) ≠ 𝑄)) |
| 41 | 30, 40 | mpd 15 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝐹‘(𝐺‘𝑄)) ≠ 𝑄) |
| 42 | | cdlemg8.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 43 | 8, 22, 42, 9, 10, 11 | cdlemg8b 40630 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑄)) ∨ (𝐹‘(𝐺‘𝑃))) = (𝑄 ∨ 𝑃) ∧ (𝐹‘(𝐺‘𝑄)) ≠ 𝑄)) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑄 ∨ 𝑃)) |
| 44 | 1, 2, 3, 4, 5, 29,
41, 43 | syl133anc 1395 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑄 ∨ 𝑃)) |
| 45 | 44, 28 | eqtr4d 2780 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄) ∧ (𝐹‘(𝐺‘𝑃)) ≠ 𝑃)) → (𝑄 ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) |