Proof of Theorem ragcgr
Step | Hyp | Ref
| Expression |
1 | | eqidd 2759 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐷 = 𝐷) |
2 | | israg.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
3 | | israg.d |
. . . . 5
⊢ − =
(dist‘𝐺) |
4 | | israg.i |
. . . . 5
⊢ 𝐼 = (Itv‘𝐺) |
5 | | israg.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
6 | 5 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐺 ∈ TarskiG) |
7 | | israg.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
8 | 7 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 ∈ 𝑃) |
9 | | israg.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
10 | 9 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐶 ∈ 𝑃) |
11 | | ragcgr.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
12 | 11 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐸 ∈ 𝑃) |
13 | | ragcgr.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
14 | 13 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐹 ∈ 𝑃) |
15 | | ragcgr.c |
. . . . . 6
⊢ ∼ =
(cgrG‘𝐺) |
16 | | israg.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
17 | 16 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐴 ∈ 𝑃) |
18 | | ragcgr.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
19 | 18 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐷 ∈ 𝑃) |
20 | | ragcgr.2 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
21 | 20 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
22 | 2, 3, 4, 15, 6, 17, 8, 10, 19, 12, 14, 21 | cgr3simp2 26419 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
23 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) |
24 | 2, 3, 4, 6, 8, 10,
12, 14, 22, 23 | tgcgreq 26380 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐸 = 𝐹) |
25 | | eqidd 2759 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐹 = 𝐹) |
26 | 1, 24, 25 | s3eqd 14278 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 〈“𝐷𝐸𝐹”〉 = 〈“𝐷𝐹𝐹”〉) |
27 | | israg.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
28 | | israg.s |
. . . 4
⊢ 𝑆 = (pInvG‘𝐺) |
29 | 2, 3, 4, 27, 28, 6, 19, 14, 12 | ragtrivb 26600 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 〈“𝐷𝐹𝐹”〉 ∈ (∟G‘𝐺)) |
30 | 26, 29 | eqeltrd 2852 |
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
31 | | ragcgr.1 |
. . . . . 6
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
32 | 31 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
33 | 5 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
34 | 16 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
35 | 7 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | 9 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
37 | 2, 3, 4, 27, 28, 33, 34, 35, 36 | israg 26595 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶)))) |
38 | 32, 37 | mpbid 235 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐴 − ((𝑆‘𝐵)‘𝐶))) |
39 | 13 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐹 ∈ 𝑃) |
40 | 18 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
41 | 11 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐸 ∈ 𝑃) |
42 | 20 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝐷𝐸𝐹”〉) |
43 | 2, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42 | cgr3simp3 26420 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
44 | 2, 3, 4, 33, 36, 34, 39, 40, 43 | tgcgrcomlr 26378 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
45 | | eqid 2758 |
. . . . . 6
⊢ (𝑆‘𝐵) = (𝑆‘𝐵) |
46 | 2, 3, 4, 27, 28, 33, 35, 45, 36 | mircl 26559 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐵)‘𝐶) ∈ 𝑃) |
47 | | eqid 2758 |
. . . . . 6
⊢ (𝑆‘𝐸) = (𝑆‘𝐸) |
48 | 2, 3, 4, 27, 28, 33, 41, 47, 39 | mircl 26559 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐸)‘𝐹) ∈ 𝑃) |
49 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
50 | 49 | necomd 3006 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
51 | 2, 3, 4, 27, 28, 33, 35, 45, 36 | mirbtwn 26556 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐵)‘𝐶)𝐼𝐶)) |
52 | 2, 3, 4, 33, 46, 35, 36, 51 | tgbtwncom 26386 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐵)‘𝐶))) |
53 | 2, 3, 4, 27, 28, 33, 41, 47, 39 | mirbtwn 26556 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐸 ∈ (((𝑆‘𝐸)‘𝐹)𝐼𝐹)) |
54 | 2, 3, 4, 33, 48, 41, 39, 53 | tgbtwncom 26386 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐸 ∈ (𝐹𝐼((𝑆‘𝐸)‘𝐹))) |
55 | 2, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42 | cgr3simp2 26419 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 − 𝐶) = (𝐸 − 𝐹)) |
56 | 2, 3, 4, 33, 35, 36, 41, 39, 55 | tgcgrcomlr 26378 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐶 − 𝐵) = (𝐹 − 𝐸)) |
57 | 2, 3, 4, 27, 28, 33, 35, 45, 36 | mircgr 26555 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 − ((𝑆‘𝐵)‘𝐶)) = (𝐵 − 𝐶)) |
58 | 2, 3, 4, 27, 28, 33, 41, 47, 39 | mircgr 26555 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐸 − ((𝑆‘𝐸)‘𝐹)) = (𝐸 − 𝐹)) |
59 | 55, 57, 58 | 3eqtr4d 2803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 − ((𝑆‘𝐵)‘𝐶)) = (𝐸 − ((𝑆‘𝐸)‘𝐹))) |
60 | 2, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42 | cgr3simp1 26418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
61 | 2, 3, 4, 33, 34, 35, 40, 41, 60 | tgcgrcomlr 26378 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
62 | 2, 3, 4, 33, 36, 35, 46, 39, 41, 48, 34, 40, 50, 52, 54, 56, 59, 43, 61 | axtg5seg 26363 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (((𝑆‘𝐵)‘𝐶) − 𝐴) = (((𝑆‘𝐸)‘𝐹) − 𝐷)) |
63 | 2, 3, 4, 33, 46, 34, 48, 40, 62 | tgcgrcomlr 26378 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐵)‘𝐶)) = (𝐷 − ((𝑆‘𝐸)‘𝐹))) |
64 | 38, 44, 63 | 3eqtr3d 2801 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (𝐷 − 𝐹) = (𝐷 − ((𝑆‘𝐸)‘𝐹))) |
65 | 2, 3, 4, 27, 28, 33, 40, 41, 39 | israg 26595 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → (〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝐹) = (𝐷 − ((𝑆‘𝐸)‘𝐹)))) |
66 | 64, 65 | mpbird 260 |
. 2
⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
67 | 30, 66 | pm2.61dane 3038 |
1
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |