MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragcgr Structured version   Visualization version   GIF version

Theorem ragcgr 26605
Description: Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragcgr.c = (cgrG‘𝐺)
ragcgr.d (𝜑𝐷𝑃)
ragcgr.e (𝜑𝐸𝑃)
ragcgr.f (𝜑𝐹𝑃)
ragcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragcgr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
ragcgr (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragcgr
StepHypRef Expression
1 eqidd 2759 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐷 = 𝐷)
2 israg.p . . . . 5 𝑃 = (Base‘𝐺)
3 israg.d . . . . 5 = (dist‘𝐺)
4 israg.i . . . . 5 𝐼 = (Itv‘𝐺)
5 israg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐺 ∈ TarskiG)
7 israg.b . . . . . 6 (𝜑𝐵𝑃)
87adantr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵𝑃)
9 israg.c . . . . . 6 (𝜑𝐶𝑃)
109adantr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐶𝑃)
11 ragcgr.e . . . . . 6 (𝜑𝐸𝑃)
1211adantr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐸𝑃)
13 ragcgr.f . . . . . 6 (𝜑𝐹𝑃)
1413adantr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐹𝑃)
15 ragcgr.c . . . . . 6 = (cgrG‘𝐺)
16 israg.a . . . . . . 7 (𝜑𝐴𝑃)
1716adantr 484 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐴𝑃)
18 ragcgr.d . . . . . . 7 (𝜑𝐷𝑃)
1918adantr 484 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐷𝑃)
20 ragcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
2120adantr 484 . . . . . 6 ((𝜑𝐵 = 𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
222, 3, 4, 15, 6, 17, 8, 10, 19, 12, 14, 21cgr3simp2 26419 . . . . 5 ((𝜑𝐵 = 𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
23 simpr 488 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
242, 3, 4, 6, 8, 10, 12, 14, 22, 23tgcgreq 26380 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐸 = 𝐹)
25 eqidd 2759 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐹 = 𝐹)
261, 24, 25s3eqd 14278 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ = ⟨“𝐷𝐹𝐹”⟩)
27 israg.l . . . 4 𝐿 = (LineG‘𝐺)
28 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
292, 3, 4, 27, 28, 6, 19, 14, 12ragtrivb 26600 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐹𝐹”⟩ ∈ (∟G‘𝐺))
3026, 29eqeltrd 2852 . 2 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
31 ragcgr.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
3231adantr 484 . . . . 5 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
335adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
3416adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴𝑃)
357adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵𝑃)
369adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝑃)
372, 3, 4, 27, 28, 33, 34, 35, 36israg 26595 . . . . 5 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
3832, 37mpbid 235 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
3913adantr 484 . . . . 5 ((𝜑𝐵𝐶) → 𝐹𝑃)
4018adantr 484 . . . . 5 ((𝜑𝐵𝐶) → 𝐷𝑃)
4111adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸𝑃)
4220adantr 484 . . . . . 6 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
432, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp3 26420 . . . . 5 ((𝜑𝐵𝐶) → (𝐶 𝐴) = (𝐹 𝐷))
442, 3, 4, 33, 36, 34, 39, 40, 43tgcgrcomlr 26378 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐷 𝐹))
45 eqid 2758 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
462, 3, 4, 27, 28, 33, 35, 45, 36mircl 26559 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
47 eqid 2758 . . . . . 6 (𝑆𝐸) = (𝑆𝐸)
482, 3, 4, 27, 28, 33, 41, 47, 39mircl 26559 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐸)‘𝐹) ∈ 𝑃)
49 simpr 488 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵𝐶)
5049necomd 3006 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝐵)
512, 3, 4, 27, 28, 33, 35, 45, 36mirbtwn 26556 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
522, 3, 4, 33, 46, 35, 36, 51tgbtwncom 26386 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
532, 3, 4, 27, 28, 33, 41, 47, 39mirbtwn 26556 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐸 ∈ (((𝑆𝐸)‘𝐹)𝐼𝐹))
542, 3, 4, 33, 48, 41, 39, 53tgbtwncom 26386 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸 ∈ (𝐹𝐼((𝑆𝐸)‘𝐹)))
552, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp2 26419 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
562, 3, 4, 33, 35, 36, 41, 39, 55tgcgrcomlr 26378 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 𝐵) = (𝐹 𝐸))
572, 3, 4, 27, 28, 33, 35, 45, 36mircgr 26555 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐵 𝐶))
582, 3, 4, 27, 28, 33, 41, 47, 39mircgr 26555 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐸 ((𝑆𝐸)‘𝐹)) = (𝐸 𝐹))
5955, 57, 583eqtr4d 2803 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐸 ((𝑆𝐸)‘𝐹)))
602, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp1 26418 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐴 𝐵) = (𝐷 𝐸))
612, 3, 4, 33, 34, 35, 40, 41, 60tgcgrcomlr 26378 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 𝐴) = (𝐸 𝐷))
622, 3, 4, 33, 36, 35, 46, 39, 41, 48, 34, 40, 50, 52, 54, 56, 59, 43, 61axtg5seg 26363 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐸)‘𝐹) 𝐷))
632, 3, 4, 33, 46, 34, 48, 40, 62tgcgrcomlr 26378 . . . 4 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (𝐷 ((𝑆𝐸)‘𝐹)))
6438, 44, 633eqtr3d 2801 . . 3 ((𝜑𝐵𝐶) → (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹)))
652, 3, 4, 27, 28, 33, 40, 41, 39israg 26595 . . 3 ((𝜑𝐵𝐶) → (⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹))))
6664, 65mpbird 260 . 2 ((𝜑𝐵𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6730, 66pm2.61dane 3038 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5035  cfv 6339  (class class class)co 7155  ⟨“cs3 14256  Basecbs 16546  distcds 16637  TarskiGcstrkg 26328  Itvcitv 26334  LineGclng 26335  cgrGccgrg 26408  pInvGcmir 26550  ∟Gcrag 26591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-fzo 13088  df-hash 13746  df-word 13919  df-concat 13975  df-s1 14002  df-s2 14262  df-s3 14263  df-trkgc 26346  df-trkgb 26347  df-trkgcb 26348  df-trkg 26351  df-cgrg 26409  df-mir 26551  df-rag 26592
This theorem is referenced by:  motrag  26606  footexALT  26616  footexlem1  26617  footexlem2  26618
  Copyright terms: Public domain W3C validator