MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragcgr Structured version   Visualization version   GIF version

Theorem ragcgr 26972
Description: Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragcgr.c = (cgrG‘𝐺)
ragcgr.d (𝜑𝐷𝑃)
ragcgr.e (𝜑𝐸𝑃)
ragcgr.f (𝜑𝐹𝑃)
ragcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragcgr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
ragcgr (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragcgr
StepHypRef Expression
1 eqidd 2739 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐷 = 𝐷)
2 israg.p . . . . 5 𝑃 = (Base‘𝐺)
3 israg.d . . . . 5 = (dist‘𝐺)
4 israg.i . . . . 5 𝐼 = (Itv‘𝐺)
5 israg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐺 ∈ TarskiG)
7 israg.b . . . . . 6 (𝜑𝐵𝑃)
87adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵𝑃)
9 israg.c . . . . . 6 (𝜑𝐶𝑃)
109adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐶𝑃)
11 ragcgr.e . . . . . 6 (𝜑𝐸𝑃)
1211adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐸𝑃)
13 ragcgr.f . . . . . 6 (𝜑𝐹𝑃)
1413adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐹𝑃)
15 ragcgr.c . . . . . 6 = (cgrG‘𝐺)
16 israg.a . . . . . . 7 (𝜑𝐴𝑃)
1716adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐴𝑃)
18 ragcgr.d . . . . . . 7 (𝜑𝐷𝑃)
1918adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐷𝑃)
20 ragcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
222, 3, 4, 15, 6, 17, 8, 10, 19, 12, 14, 21cgr3simp2 26786 . . . . 5 ((𝜑𝐵 = 𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
23 simpr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
242, 3, 4, 6, 8, 10, 12, 14, 22, 23tgcgreq 26747 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐸 = 𝐹)
25 eqidd 2739 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐹 = 𝐹)
261, 24, 25s3eqd 14505 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ = ⟨“𝐷𝐹𝐹”⟩)
27 israg.l . . . 4 𝐿 = (LineG‘𝐺)
28 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
292, 3, 4, 27, 28, 6, 19, 14, 12ragtrivb 26967 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐹𝐹”⟩ ∈ (∟G‘𝐺))
3026, 29eqeltrd 2839 . 2 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
31 ragcgr.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
3231adantr 480 . . . . 5 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
335adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
3416adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴𝑃)
357adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵𝑃)
369adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝑃)
372, 3, 4, 27, 28, 33, 34, 35, 36israg 26962 . . . . 5 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
3832, 37mpbid 231 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
3913adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐹𝑃)
4018adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐷𝑃)
4111adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸𝑃)
4220adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
432, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp3 26787 . . . . 5 ((𝜑𝐵𝐶) → (𝐶 𝐴) = (𝐹 𝐷))
442, 3, 4, 33, 36, 34, 39, 40, 43tgcgrcomlr 26745 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐷 𝐹))
45 eqid 2738 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
462, 3, 4, 27, 28, 33, 35, 45, 36mircl 26926 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
47 eqid 2738 . . . . . 6 (𝑆𝐸) = (𝑆𝐸)
482, 3, 4, 27, 28, 33, 41, 47, 39mircl 26926 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐸)‘𝐹) ∈ 𝑃)
49 simpr 484 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵𝐶)
5049necomd 2998 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝐵)
512, 3, 4, 27, 28, 33, 35, 45, 36mirbtwn 26923 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
522, 3, 4, 33, 46, 35, 36, 51tgbtwncom 26753 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
532, 3, 4, 27, 28, 33, 41, 47, 39mirbtwn 26923 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐸 ∈ (((𝑆𝐸)‘𝐹)𝐼𝐹))
542, 3, 4, 33, 48, 41, 39, 53tgbtwncom 26753 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸 ∈ (𝐹𝐼((𝑆𝐸)‘𝐹)))
552, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp2 26786 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
562, 3, 4, 33, 35, 36, 41, 39, 55tgcgrcomlr 26745 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 𝐵) = (𝐹 𝐸))
572, 3, 4, 27, 28, 33, 35, 45, 36mircgr 26922 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐵 𝐶))
582, 3, 4, 27, 28, 33, 41, 47, 39mircgr 26922 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐸 ((𝑆𝐸)‘𝐹)) = (𝐸 𝐹))
5955, 57, 583eqtr4d 2788 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐸 ((𝑆𝐸)‘𝐹)))
602, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp1 26785 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐴 𝐵) = (𝐷 𝐸))
612, 3, 4, 33, 34, 35, 40, 41, 60tgcgrcomlr 26745 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 𝐴) = (𝐸 𝐷))
622, 3, 4, 33, 36, 35, 46, 39, 41, 48, 34, 40, 50, 52, 54, 56, 59, 43, 61axtg5seg 26730 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐸)‘𝐹) 𝐷))
632, 3, 4, 33, 46, 34, 48, 40, 62tgcgrcomlr 26745 . . . 4 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (𝐷 ((𝑆𝐸)‘𝐹)))
6438, 44, 633eqtr3d 2786 . . 3 ((𝜑𝐵𝐶) → (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹)))
652, 3, 4, 27, 28, 33, 40, 41, 39israg 26962 . . 3 ((𝜑𝐵𝐶) → (⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹))))
6664, 65mpbird 256 . 2 ((𝜑𝐵𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6730, 66pm2.61dane 3031 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  cgrGccgrg 26775  pInvGcmir 26917  ∟Gcrag 26958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776  df-mir 26918  df-rag 26959
This theorem is referenced by:  motrag  26973  footexALT  26983  footexlem1  26984  footexlem2  26985
  Copyright terms: Public domain W3C validator