MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragcgr Structured version   Visualization version   GIF version

Theorem ragcgr 28634
Description: Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragcgr.c = (cgrG‘𝐺)
ragcgr.d (𝜑𝐷𝑃)
ragcgr.e (𝜑𝐸𝑃)
ragcgr.f (𝜑𝐹𝑃)
ragcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragcgr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
ragcgr (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragcgr
StepHypRef Expression
1 eqidd 2730 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐷 = 𝐷)
2 israg.p . . . . 5 𝑃 = (Base‘𝐺)
3 israg.d . . . . 5 = (dist‘𝐺)
4 israg.i . . . . 5 𝐼 = (Itv‘𝐺)
5 israg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐺 ∈ TarskiG)
7 israg.b . . . . . 6 (𝜑𝐵𝑃)
87adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵𝑃)
9 israg.c . . . . . 6 (𝜑𝐶𝑃)
109adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐶𝑃)
11 ragcgr.e . . . . . 6 (𝜑𝐸𝑃)
1211adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐸𝑃)
13 ragcgr.f . . . . . 6 (𝜑𝐹𝑃)
1413adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐹𝑃)
15 ragcgr.c . . . . . 6 = (cgrG‘𝐺)
16 israg.a . . . . . . 7 (𝜑𝐴𝑃)
1716adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐴𝑃)
18 ragcgr.d . . . . . . 7 (𝜑𝐷𝑃)
1918adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐷𝑃)
20 ragcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
222, 3, 4, 15, 6, 17, 8, 10, 19, 12, 14, 21cgr3simp2 28448 . . . . 5 ((𝜑𝐵 = 𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
23 simpr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
242, 3, 4, 6, 8, 10, 12, 14, 22, 23tgcgreq 28409 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐸 = 𝐹)
25 eqidd 2730 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐹 = 𝐹)
261, 24, 25s3eqd 14830 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ = ⟨“𝐷𝐹𝐹”⟩)
27 israg.l . . . 4 𝐿 = (LineG‘𝐺)
28 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
292, 3, 4, 27, 28, 6, 19, 14, 12ragtrivb 28629 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐹𝐹”⟩ ∈ (∟G‘𝐺))
3026, 29eqeltrd 2828 . 2 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
31 ragcgr.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
3231adantr 480 . . . . 5 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
335adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
3416adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴𝑃)
357adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵𝑃)
369adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝑃)
372, 3, 4, 27, 28, 33, 34, 35, 36israg 28624 . . . . 5 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
3832, 37mpbid 232 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
3913adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐹𝑃)
4018adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐷𝑃)
4111adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸𝑃)
4220adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
432, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp3 28449 . . . . 5 ((𝜑𝐵𝐶) → (𝐶 𝐴) = (𝐹 𝐷))
442, 3, 4, 33, 36, 34, 39, 40, 43tgcgrcomlr 28407 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐷 𝐹))
45 eqid 2729 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
462, 3, 4, 27, 28, 33, 35, 45, 36mircl 28588 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
47 eqid 2729 . . . . . 6 (𝑆𝐸) = (𝑆𝐸)
482, 3, 4, 27, 28, 33, 41, 47, 39mircl 28588 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐸)‘𝐹) ∈ 𝑃)
49 simpr 484 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵𝐶)
5049necomd 2980 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝐵)
512, 3, 4, 27, 28, 33, 35, 45, 36mirbtwn 28585 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
522, 3, 4, 33, 46, 35, 36, 51tgbtwncom 28415 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
532, 3, 4, 27, 28, 33, 41, 47, 39mirbtwn 28585 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐸 ∈ (((𝑆𝐸)‘𝐹)𝐼𝐹))
542, 3, 4, 33, 48, 41, 39, 53tgbtwncom 28415 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸 ∈ (𝐹𝐼((𝑆𝐸)‘𝐹)))
552, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp2 28448 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
562, 3, 4, 33, 35, 36, 41, 39, 55tgcgrcomlr 28407 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 𝐵) = (𝐹 𝐸))
572, 3, 4, 27, 28, 33, 35, 45, 36mircgr 28584 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐵 𝐶))
582, 3, 4, 27, 28, 33, 41, 47, 39mircgr 28584 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐸 ((𝑆𝐸)‘𝐹)) = (𝐸 𝐹))
5955, 57, 583eqtr4d 2774 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐸 ((𝑆𝐸)‘𝐹)))
602, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp1 28447 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐴 𝐵) = (𝐷 𝐸))
612, 3, 4, 33, 34, 35, 40, 41, 60tgcgrcomlr 28407 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 𝐴) = (𝐸 𝐷))
622, 3, 4, 33, 36, 35, 46, 39, 41, 48, 34, 40, 50, 52, 54, 56, 59, 43, 61axtg5seg 28392 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐸)‘𝐹) 𝐷))
632, 3, 4, 33, 46, 34, 48, 40, 62tgcgrcomlr 28407 . . . 4 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (𝐷 ((𝑆𝐸)‘𝐹)))
6438, 44, 633eqtr3d 2772 . . 3 ((𝜑𝐵𝐶) → (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹)))
652, 3, 4, 27, 28, 33, 40, 41, 39israg 28624 . . 3 ((𝜑𝐵𝐶) → (⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹))))
6664, 65mpbird 257 . 2 ((𝜑𝐵𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6730, 66pm2.61dane 3012 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  ⟨“cs3 14808  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  cgrGccgrg 28437  pInvGcmir 28579  ∟Gcrag 28620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438  df-mir 28580  df-rag 28621
This theorem is referenced by:  motrag  28635  footexALT  28645  footexlem1  28646  footexlem2  28647
  Copyright terms: Public domain W3C validator