MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragcgr Structured version   Visualization version   GIF version

Theorem ragcgr 28686
Description: Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragcgr.c = (cgrG‘𝐺)
ragcgr.d (𝜑𝐷𝑃)
ragcgr.e (𝜑𝐸𝑃)
ragcgr.f (𝜑𝐹𝑃)
ragcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragcgr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
ragcgr (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))

Proof of Theorem ragcgr
StepHypRef Expression
1 eqidd 2734 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐷 = 𝐷)
2 israg.p . . . . 5 𝑃 = (Base‘𝐺)
3 israg.d . . . . 5 = (dist‘𝐺)
4 israg.i . . . . 5 𝐼 = (Itv‘𝐺)
5 israg.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐺 ∈ TarskiG)
7 israg.b . . . . . 6 (𝜑𝐵𝑃)
87adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵𝑃)
9 israg.c . . . . . 6 (𝜑𝐶𝑃)
109adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐶𝑃)
11 ragcgr.e . . . . . 6 (𝜑𝐸𝑃)
1211adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐸𝑃)
13 ragcgr.f . . . . . 6 (𝜑𝐹𝑃)
1413adantr 480 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐹𝑃)
15 ragcgr.c . . . . . 6 = (cgrG‘𝐺)
16 israg.a . . . . . . 7 (𝜑𝐴𝑃)
1716adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐴𝑃)
18 ragcgr.d . . . . . . 7 (𝜑𝐷𝑃)
1918adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → 𝐷𝑃)
20 ragcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
222, 3, 4, 15, 6, 17, 8, 10, 19, 12, 14, 21cgr3simp2 28500 . . . . 5 ((𝜑𝐵 = 𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
23 simpr 484 . . . . 5 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
242, 3, 4, 6, 8, 10, 12, 14, 22, 23tgcgreq 28461 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐸 = 𝐹)
25 eqidd 2734 . . . 4 ((𝜑𝐵 = 𝐶) → 𝐹 = 𝐹)
261, 24, 25s3eqd 14773 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ = ⟨“𝐷𝐹𝐹”⟩)
27 israg.l . . . 4 𝐿 = (LineG‘𝐺)
28 israg.s . . . 4 𝑆 = (pInvG‘𝐺)
292, 3, 4, 27, 28, 6, 19, 14, 12ragtrivb 28681 . . 3 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐹𝐹”⟩ ∈ (∟G‘𝐺))
3026, 29eqeltrd 2833 . 2 ((𝜑𝐵 = 𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
31 ragcgr.1 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
3231adantr 480 . . . . 5 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
335adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
3416adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴𝑃)
357adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵𝑃)
369adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝑃)
372, 3, 4, 27, 28, 33, 34, 35, 36israg 28676 . . . . 5 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
3832, 37mpbid 232 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
3913adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐹𝑃)
4018adantr 480 . . . . 5 ((𝜑𝐵𝐶) → 𝐷𝑃)
4111adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸𝑃)
4220adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
432, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp3 28501 . . . . 5 ((𝜑𝐵𝐶) → (𝐶 𝐴) = (𝐹 𝐷))
442, 3, 4, 33, 36, 34, 39, 40, 43tgcgrcomlr 28459 . . . 4 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐷 𝐹))
45 eqid 2733 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
462, 3, 4, 27, 28, 33, 35, 45, 36mircl 28640 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
47 eqid 2733 . . . . . 6 (𝑆𝐸) = (𝑆𝐸)
482, 3, 4, 27, 28, 33, 41, 47, 39mircl 28640 . . . . 5 ((𝜑𝐵𝐶) → ((𝑆𝐸)‘𝐹) ∈ 𝑃)
49 simpr 484 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵𝐶)
5049necomd 2984 . . . . . 6 ((𝜑𝐵𝐶) → 𝐶𝐵)
512, 3, 4, 27, 28, 33, 35, 45, 36mirbtwn 28637 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
522, 3, 4, 33, 46, 35, 36, 51tgbtwncom 28467 . . . . . 6 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
532, 3, 4, 27, 28, 33, 41, 47, 39mirbtwn 28637 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐸 ∈ (((𝑆𝐸)‘𝐹)𝐼𝐹))
542, 3, 4, 33, 48, 41, 39, 53tgbtwncom 28467 . . . . . 6 ((𝜑𝐵𝐶) → 𝐸 ∈ (𝐹𝐼((𝑆𝐸)‘𝐹)))
552, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp2 28500 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 𝐶) = (𝐸 𝐹))
562, 3, 4, 33, 35, 36, 41, 39, 55tgcgrcomlr 28459 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 𝐵) = (𝐹 𝐸))
572, 3, 4, 27, 28, 33, 35, 45, 36mircgr 28636 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐵 𝐶))
582, 3, 4, 27, 28, 33, 41, 47, 39mircgr 28636 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐸 ((𝑆𝐸)‘𝐹)) = (𝐸 𝐹))
5955, 57, 583eqtr4d 2778 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐸 ((𝑆𝐸)‘𝐹)))
602, 3, 4, 15, 33, 34, 35, 36, 40, 41, 39, 42cgr3simp1 28499 . . . . . . 7 ((𝜑𝐵𝐶) → (𝐴 𝐵) = (𝐷 𝐸))
612, 3, 4, 33, 34, 35, 40, 41, 60tgcgrcomlr 28459 . . . . . 6 ((𝜑𝐵𝐶) → (𝐵 𝐴) = (𝐸 𝐷))
622, 3, 4, 33, 36, 35, 46, 39, 41, 48, 34, 40, 50, 52, 54, 56, 59, 43, 61axtg5seg 28444 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐸)‘𝐹) 𝐷))
632, 3, 4, 33, 46, 34, 48, 40, 62tgcgrcomlr 28459 . . . 4 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (𝐷 ((𝑆𝐸)‘𝐹)))
6438, 44, 633eqtr3d 2776 . . 3 ((𝜑𝐵𝐶) → (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹)))
652, 3, 4, 27, 28, 33, 40, 41, 39israg 28676 . . 3 ((𝜑𝐵𝐶) → (⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐹) = (𝐷 ((𝑆𝐸)‘𝐹))))
6664, 65mpbird 257 . 2 ((𝜑𝐵𝐶) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6730, 66pm2.61dane 3016 1 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  ⟨“cs3 14751  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  cgrGccgrg 28489  pInvGcmir 28631  ∟Gcrag 28672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-mir 28632  df-rag 28673
This theorem is referenced by:  motrag  28687  footexALT  28697  footexlem1  28698  footexlem2  28699
  Copyright terms: Public domain W3C validator