MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiisolem Structured version   Visualization version   GIF version

Theorem lmiisolem 28804
Description: Lemma for lmiiso 28805. (Contributed by Thierry Arnoux, 14-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmiiso.1 (𝜑𝐴𝑃)
lmiiso.2 (𝜑𝐵𝑃)
lmiisolem.s 𝑆 = ((pInvG‘𝐺)‘𝑍)
lmiisolem.z 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
Assertion
Ref Expression
lmiisolem (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))

Proof of Theorem lmiisolem
StepHypRef Expression
1 ismid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 ismid.d . . . . . . . 8 = (dist‘𝐺)
3 ismid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
4 ismid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐺 ∈ TarskiG)
6 lmiisolem.z . . . . . . . . . 10 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
7 ismid.1 . . . . . . . . . . 11 (𝜑𝐺DimTarskiG≥2)
8 lmiiso.1 . . . . . . . . . . . 12 (𝜑𝐴𝑃)
9 lmif.m . . . . . . . . . . . . 13 𝑀 = ((lInvG‘𝐺)‘𝐷)
10 lmif.l . . . . . . . . . . . . 13 𝐿 = (LineG‘𝐺)
11 lmif.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ran 𝐿)
121, 2, 3, 4, 7, 9, 10, 11, 8lmicl 28794 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ 𝑃)
131, 2, 3, 4, 7, 8, 12midcl 28785 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
14 lmiiso.2 . . . . . . . . . . . 12 (𝜑𝐵𝑃)
151, 2, 3, 4, 7, 9, 10, 11, 14lmicl 28794 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐵) ∈ 𝑃)
161, 2, 3, 4, 7, 14, 15midcl 28785 . . . . . . . . . . 11 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
171, 2, 3, 4, 7, 13, 16midcl 28785 . . . . . . . . . 10 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ 𝑃)
186, 17eqeltrid 2845 . . . . . . . . 9 (𝜑𝑍𝑃)
1918adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝑃)
20 eqid 2737 . . . . . . . . . 10 (pInvG‘𝐺) = (pInvG‘𝐺)
21 lmiisolem.s . . . . . . . . . 10 𝑆 = ((pInvG‘𝐺)‘𝑍)
221, 2, 3, 10, 20, 4, 18, 21, 8mircl 28669 . . . . . . . . 9 (𝜑 → (𝑆𝐴) ∈ 𝑃)
2322adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) ∈ 𝑃)
248adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝑃)
251, 2, 3, 10, 20, 5, 19, 21, 24mircgr 28665 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
26 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) = 𝑍)
2726eqcomd 2743 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = (𝑆𝐴))
281, 2, 3, 5, 19, 23, 19, 24, 25, 27tgcgreq 28490 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = 𝐴)
29 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
3029oveq2d 7447 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))))
316, 30eqtr4id 2796 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))))
324adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
337adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺DimTarskiG≥2)
3413adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
351, 2, 3, 32, 33, 34, 34midid 28789 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = (𝐴(midG‘𝐺)(𝑀𝐴)))
3631, 35eqtrd 2777 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = (𝐴(midG‘𝐺)(𝑀𝐴)))
37 eqidd 2738 . . . . . . . . . . . . 13 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
381, 2, 3, 4, 7, 9, 10, 11, 8, 12islmib 28795 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
3937, 38mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
4039simpld 494 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4236, 41eqeltrd 2841 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
434adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
4413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
4516adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
4618adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝑃)
47 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵)))
481, 2, 3, 4, 7, 13, 16midbtwn 28787 . . . . . . . . . . . . 13 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
496, 48eqeltrid 2845 . . . . . . . . . . . 12 (𝜑𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
5049adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
511, 3, 10, 43, 44, 45, 46, 47, 50btwnlng1 28627 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
5211adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 ∈ ran 𝐿)
5340adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
54 eqidd 2738 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐵) = (𝑀𝐵))
551, 2, 3, 4, 7, 9, 10, 11, 14, 15islmib 28795 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐵) = (𝑀𝐵) ↔ ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))))
5654, 55mpbid 232 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵))))
5756simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
5857adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
591, 3, 10, 43, 44, 45, 47, 47, 52, 53, 58tglinethru 28644 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
6051, 59eleqtrrd 2844 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
6142, 60pm2.61dane 3029 . . . . . . . 8 (𝜑𝑍𝐷)
6261adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝐷)
6328, 62eqeltrrd 2842 . . . . . 6 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝐷)
641, 2, 3, 4, 7, 9, 10, 11, 8lmiinv 28800 . . . . . . 7 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
6564biimpar 477 . . . . . 6 ((𝜑𝐴𝐷) → (𝑀𝐴) = 𝐴)
6663, 65syldan 591 . . . . 5 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝐴)
6766, 28eqtr4d 2780 . . . 4 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝑍)
6867oveq1d 7446 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝑍 (𝑀𝐵)))
69 eqidd 2738 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝑍 = 𝑍)
704adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐺 ∈ TarskiG)
7114adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵𝑃)
7216adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
731, 2, 3, 4, 7, 14, 15midbtwn 28787 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
7473adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
75 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝑀𝐵))
7675oveq2d 7447 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵𝐼𝐵) = (𝐵𝐼(𝑀𝐵)))
7774, 76eleqtrrd 2844 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼𝐵))
781, 2, 3, 70, 71, 72, 77axtgbtwnid 28474 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝐵(midG‘𝐺)(𝑀𝐵)))
79 eqidd 2738 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = 𝐵)
8069, 78, 79s3eqd 14903 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ = ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩)
811, 2, 3, 10, 20, 4, 18, 14, 14ragtrivb 28710 . . . . . . . . 9 (𝜑 → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8281adantr 480 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8380, 82eqeltrrd 2842 . . . . . . 7 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
844adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐺 ∈ TarskiG)
8561adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝑍𝐷)
8657adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
8714adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵𝑃)
88 df-ne 2941 . . . . . . . . . 10 (𝐵 ≠ (𝑀𝐵) ↔ ¬ 𝐵 = (𝑀𝐵))
8956simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))
9089orcomd 872 . . . . . . . . . . 11 (𝜑 → (𝐵 = (𝑀𝐵) ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵))))
9190orcanai 1005 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9288, 91sylan2b 594 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9315adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝑀𝐵) ∈ 𝑃)
94 simpr 484 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵 ≠ (𝑀𝐵))
9516adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
964adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺 ∈ TarskiG)
9714adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵𝑃)
9815adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝑀𝐵) ∈ 𝑃)
997adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺DimTarskiG≥2)
100 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵)
1011, 2, 3, 96, 99, 97, 98, 100midcgr 28788 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 𝐵) = (𝐵 (𝑀𝐵)))
102101eqcomd 2743 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 (𝑀𝐵)) = (𝐵 𝐵))
1031, 2, 3, 96, 97, 98, 97, 102axtgcgrid 28471 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵 = (𝑀𝐵))
104103ex 412 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵𝐵 = (𝑀𝐵)))
105104necon3d 2961 . . . . . . . . . . . 12 (𝜑 → (𝐵 ≠ (𝑀𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵))
106105imp 406 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵)
10773adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
1081, 3, 10, 84, 87, 93, 95, 94, 107btwnlng1 28627 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐿(𝑀𝐵)))
1091, 3, 10, 84, 87, 93, 94, 95, 106, 108tglineelsb2 28640 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
1101, 3, 10, 84, 95, 87, 106tglinecom 28643 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
111109, 110eqtr4d 2780 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
11292, 111breqtrd 5169 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
1131, 2, 3, 10, 84, 85, 86, 87, 112perpdrag 28736 . . . . . . 7 ((𝜑𝐵 ≠ (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
11483, 113pm2.61dane 3029 . . . . . 6 (𝜑 → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
1151, 2, 3, 10, 20, 4, 18, 16, 14israg 28705 . . . . . 6 (𝜑 → (⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))))
116114, 115mpbid 232 . . . . 5 (𝜑 → (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
117 eqidd 2738 . . . . . . 7 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
1181, 2, 3, 4, 7, 14, 15, 20, 16ismidb 28786 . . . . . . 7 (𝜑 → ((𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) ↔ (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵))))
119117, 118mpbird 257 . . . . . 6 (𝜑 → (𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))
120119oveq2d 7447 . . . . 5 (𝜑 → (𝑍 (𝑀𝐵)) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
121116, 120eqtr4d 2780 . . . 4 (𝜑 → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
122121adantr 480 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
12328oveq1d 7446 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝐴 𝐵))
12468, 122, 1233eqtr2d 2783 . 2 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
1254adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐺 ∈ TarskiG)
12622adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ∈ 𝑃)
12718adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍𝑃)
1288adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐴𝑃)
1291, 2, 3, 10, 20, 4, 18, 21, 12mircl 28669 . . . . 5 (𝜑 → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
130129adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
13112adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ 𝑃)
13214adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐵𝑃)
13315adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐵) ∈ 𝑃)
134 simpr 484 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ≠ 𝑍)
1351, 2, 3, 10, 20, 125, 127, 21, 128mirbtwn 28666 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆𝐴)𝐼𝐴))
1361, 2, 3, 10, 20, 125, 127, 21, 131mirbtwn 28666 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆‘(𝑀𝐴))𝐼(𝑀𝐴)))
137 eqidd 2738 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝑍 = 𝑍)
1384adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐺 ∈ TarskiG)
1398adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴𝑃)
14013adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1411, 2, 3, 4, 7, 8, 12midbtwn 28787 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
142141adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
143 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝑀𝐴))
144143oveq2d 7447 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴𝐼𝐴) = (𝐴𝐼(𝑀𝐴)))
145142, 144eleqtrrd 2844 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼𝐴))
1461, 2, 3, 138, 139, 140, 145axtgbtwnid 28474 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝐴(midG‘𝐺)(𝑀𝐴)))
147 eqidd 2738 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = 𝐴)
148137, 146, 147s3eqd 14903 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ = ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩)
1491, 2, 3, 10, 20, 4, 18, 8, 8ragtrivb 28710 . . . . . . . . . . . 12 (𝜑 → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
151148, 150eqeltrrd 2842 . . . . . . . . . 10 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1524adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐺 ∈ TarskiG)
15361adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝑍𝐷)
15440adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
1558adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴𝑃)
156 df-ne 2941 . . . . . . . . . . . . 13 (𝐴 ≠ (𝑀𝐴) ↔ ¬ 𝐴 = (𝑀𝐴))
15739simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))
158157orcomd 872 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 = (𝑀𝐴) ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴))))
159158orcanai 1005 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 = (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
160156, 159sylan2b 594 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
16112adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝑀𝐴) ∈ 𝑃)
162 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴 ≠ (𝑀𝐴))
16313adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1644adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺 ∈ TarskiG)
1658adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴𝑃)
16612adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝑀𝐴) ∈ 𝑃)
1677adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺DimTarskiG≥2)
168 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴)
1691, 2, 3, 164, 167, 165, 166, 168midcgr 28788 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 𝐴) = (𝐴 (𝑀𝐴)))
170169eqcomd 2743 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 (𝑀𝐴)) = (𝐴 𝐴))
1711, 2, 3, 164, 165, 166, 165, 170axtgcgrid 28471 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴 = (𝑀𝐴))
172171ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴𝐴 = (𝑀𝐴)))
173172necon3d 2961 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ≠ (𝑀𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴))
174173imp 406 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴)
175141adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
1761, 3, 10, 152, 155, 161, 163, 162, 175btwnlng1 28627 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐿(𝑀𝐴)))
1771, 3, 10, 152, 155, 161, 162, 163, 174, 176tglineelsb2 28640 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
1781, 3, 10, 152, 163, 155, 174tglinecom 28643 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
179177, 178eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
180160, 179breqtrd 5169 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
1811, 2, 3, 10, 152, 153, 154, 155, 180perpdrag 28736 . . . . . . . . . 10 ((𝜑𝐴 ≠ (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
182151, 181pm2.61dane 3029 . . . . . . . . 9 (𝜑 → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1831, 2, 3, 10, 20, 4, 18, 13, 8israg 28705 . . . . . . . . 9 (𝜑 → (⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))))
184182, 183mpbid 232 . . . . . . . 8 (𝜑 → (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
185 eqidd 2738 . . . . . . . . . 10 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴)))
1861, 2, 3, 4, 7, 8, 12, 20, 13ismidb 28786 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴) ↔ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴))))
187185, 186mpbird 257 . . . . . . . . 9 (𝜑 → (𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))
188187oveq2d 7447 . . . . . . . 8 (𝜑 → (𝑍 (𝑀𝐴)) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
189184, 188eqtr4d 2780 . . . . . . 7 (𝜑 → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
1901, 2, 3, 10, 20, 4, 18, 21, 8mircgr 28665 . . . . . . 7 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
1911, 2, 3, 10, 20, 4, 18, 21, 12mircgr 28665 . . . . . . 7 (𝜑 → (𝑍 (𝑆‘(𝑀𝐴))) = (𝑍 (𝑀𝐴)))
192189, 190, 1913eqtr4d 2787 . . . . . 6 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
193192adantr 480 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
1941, 2, 3, 125, 127, 126, 127, 130, 193tgcgrcomlr 28488 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝑍) = ((𝑆‘(𝑀𝐴)) 𝑍))
195189adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
19621fveq1i 6907 . . . . . . . . . 10 (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴)))
1971, 2, 3, 4, 7, 8, 12, 21, 18mirmid 28791 . . . . . . . . . 10 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))))
1986eqcomi 2746 . . . . . . . . . . 11 ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍
1991, 2, 3, 4, 7, 13, 16, 20, 18ismidb 28786 . . . . . . . . . . 11 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍))
200198, 199mpbiri 258 . . . . . . . . . 10 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))))
201196, 197, 2003eqtr4a 2803 . . . . . . . . 9 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵)))
2021, 2, 3, 4, 7, 22, 129, 20, 16ismidb 28786 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)) ↔ ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵))))
203201, 202mpbird 257 . . . . . . . 8 (𝜑 → (𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)))
204119, 203oveq12d 7449 . . . . . . 7 (𝜑 → ((𝑀𝐵) (𝑆‘(𝑀𝐴))) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))))
205 eqid 2737 . . . . . . . 8 ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵))) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))
2061, 2, 3, 10, 20, 4, 16, 205, 14, 22miriso 28678 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))) = (𝐵 (𝑆𝐴)))
207204, 206eqtr2d 2778 . . . . . 6 (𝜑 → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
208207adantr 480 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
2091, 2, 3, 125, 132, 126, 133, 130, 208tgcgrcomlr 28488 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝐵) = ((𝑆‘(𝑀𝐴)) (𝑀𝐵)))
210121adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
2111, 2, 3, 125, 126, 127, 128, 130, 127, 131, 132, 133, 134, 135, 136, 194, 195, 209, 210axtg5seg 28473 . . 3 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐴 𝐵) = ((𝑀𝐴) (𝑀𝐵)))
212211eqcomd 2743 . 2 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
213124, 212pm2.61dane 3029 1 (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  ran crn 5686  cfv 6561  (class class class)co 7431  2c2 12321  ⟨“cs3 14881  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  DimTarskiGcstrkgld 28439  Itvcitv 28441  LineGclng 28442  pInvGcmir 28660  ∟Gcrag 28701  ⟂Gcperpg 28703  midGcmid 28780  lInvGclmi 28781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkgld 28460  df-trkg 28461  df-cgrg 28519  df-leg 28591  df-mir 28661  df-rag 28702  df-perpg 28704  df-mid 28782  df-lmi 28783
This theorem is referenced by:  lmiiso  28805
  Copyright terms: Public domain W3C validator