MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiisolem Structured version   Visualization version   GIF version

Theorem lmiisolem 27061
Description: Lemma for lmiiso 27062. (Contributed by Thierry Arnoux, 14-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmiiso.1 (𝜑𝐴𝑃)
lmiiso.2 (𝜑𝐵𝑃)
lmiisolem.s 𝑆 = ((pInvG‘𝐺)‘𝑍)
lmiisolem.z 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
Assertion
Ref Expression
lmiisolem (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))

Proof of Theorem lmiisolem
StepHypRef Expression
1 ismid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 ismid.d . . . . . . . 8 = (dist‘𝐺)
3 ismid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
4 ismid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐺 ∈ TarskiG)
6 lmiisolem.z . . . . . . . . . 10 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
7 ismid.1 . . . . . . . . . . 11 (𝜑𝐺DimTarskiG≥2)
8 lmiiso.1 . . . . . . . . . . . 12 (𝜑𝐴𝑃)
9 lmif.m . . . . . . . . . . . . 13 𝑀 = ((lInvG‘𝐺)‘𝐷)
10 lmif.l . . . . . . . . . . . . 13 𝐿 = (LineG‘𝐺)
11 lmif.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ran 𝐿)
121, 2, 3, 4, 7, 9, 10, 11, 8lmicl 27051 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ 𝑃)
131, 2, 3, 4, 7, 8, 12midcl 27042 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
14 lmiiso.2 . . . . . . . . . . . 12 (𝜑𝐵𝑃)
151, 2, 3, 4, 7, 9, 10, 11, 14lmicl 27051 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐵) ∈ 𝑃)
161, 2, 3, 4, 7, 14, 15midcl 27042 . . . . . . . . . . 11 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
171, 2, 3, 4, 7, 13, 16midcl 27042 . . . . . . . . . 10 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ 𝑃)
186, 17eqeltrid 2843 . . . . . . . . 9 (𝜑𝑍𝑃)
1918adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝑃)
20 eqid 2738 . . . . . . . . . 10 (pInvG‘𝐺) = (pInvG‘𝐺)
21 lmiisolem.s . . . . . . . . . 10 𝑆 = ((pInvG‘𝐺)‘𝑍)
221, 2, 3, 10, 20, 4, 18, 21, 8mircl 26926 . . . . . . . . 9 (𝜑 → (𝑆𝐴) ∈ 𝑃)
2322adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) ∈ 𝑃)
248adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝑃)
251, 2, 3, 10, 20, 5, 19, 21, 24mircgr 26922 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
26 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) = 𝑍)
2726eqcomd 2744 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = (𝑆𝐴))
281, 2, 3, 5, 19, 23, 19, 24, 25, 27tgcgreq 26747 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = 𝐴)
29 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
3029oveq2d 7271 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))))
316, 30eqtr4id 2798 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))))
324adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
337adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺DimTarskiG≥2)
3413adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
351, 2, 3, 32, 33, 34, 34midid 27046 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = (𝐴(midG‘𝐺)(𝑀𝐴)))
3631, 35eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = (𝐴(midG‘𝐺)(𝑀𝐴)))
37 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
381, 2, 3, 4, 7, 9, 10, 11, 8, 12islmib 27052 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
3937, 38mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
4039simpld 494 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4236, 41eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
434adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
4413adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
4516adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
4618adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝑃)
47 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵)))
481, 2, 3, 4, 7, 13, 16midbtwn 27044 . . . . . . . . . . . . 13 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
496, 48eqeltrid 2843 . . . . . . . . . . . 12 (𝜑𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
5049adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
511, 3, 10, 43, 44, 45, 46, 47, 50btwnlng1 26884 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
5211adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 ∈ ran 𝐿)
5340adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
54 eqidd 2739 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐵) = (𝑀𝐵))
551, 2, 3, 4, 7, 9, 10, 11, 14, 15islmib 27052 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐵) = (𝑀𝐵) ↔ ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))))
5654, 55mpbid 231 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵))))
5756simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
5857adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
591, 3, 10, 43, 44, 45, 47, 47, 52, 53, 58tglinethru 26901 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
6051, 59eleqtrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
6142, 60pm2.61dane 3031 . . . . . . . 8 (𝜑𝑍𝐷)
6261adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝐷)
6328, 62eqeltrrd 2840 . . . . . 6 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝐷)
641, 2, 3, 4, 7, 9, 10, 11, 8lmiinv 27057 . . . . . . 7 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
6564biimpar 477 . . . . . 6 ((𝜑𝐴𝐷) → (𝑀𝐴) = 𝐴)
6663, 65syldan 590 . . . . 5 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝐴)
6766, 28eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝑍)
6867oveq1d 7270 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝑍 (𝑀𝐵)))
69 eqidd 2739 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝑍 = 𝑍)
704adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐺 ∈ TarskiG)
7114adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵𝑃)
7216adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
731, 2, 3, 4, 7, 14, 15midbtwn 27044 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
7473adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
75 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝑀𝐵))
7675oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵𝐼𝐵) = (𝐵𝐼(𝑀𝐵)))
7774, 76eleqtrrd 2842 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼𝐵))
781, 2, 3, 70, 71, 72, 77axtgbtwnid 26731 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝐵(midG‘𝐺)(𝑀𝐵)))
79 eqidd 2739 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = 𝐵)
8069, 78, 79s3eqd 14505 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ = ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩)
811, 2, 3, 10, 20, 4, 18, 14, 14ragtrivb 26967 . . . . . . . . 9 (𝜑 → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8281adantr 480 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8380, 82eqeltrrd 2840 . . . . . . 7 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
844adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐺 ∈ TarskiG)
8561adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝑍𝐷)
8657adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
8714adantr 480 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵𝑃)
88 df-ne 2943 . . . . . . . . . 10 (𝐵 ≠ (𝑀𝐵) ↔ ¬ 𝐵 = (𝑀𝐵))
8956simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))
9089orcomd 867 . . . . . . . . . . 11 (𝜑 → (𝐵 = (𝑀𝐵) ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵))))
9190orcanai 999 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9288, 91sylan2b 593 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9315adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝑀𝐵) ∈ 𝑃)
94 simpr 484 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵 ≠ (𝑀𝐵))
9516adantr 480 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
964adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺 ∈ TarskiG)
9714adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵𝑃)
9815adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝑀𝐵) ∈ 𝑃)
997adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺DimTarskiG≥2)
100 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵)
1011, 2, 3, 96, 99, 97, 98, 100midcgr 27045 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 𝐵) = (𝐵 (𝑀𝐵)))
102101eqcomd 2744 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 (𝑀𝐵)) = (𝐵 𝐵))
1031, 2, 3, 96, 97, 98, 97, 102axtgcgrid 26728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵 = (𝑀𝐵))
104103ex 412 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵𝐵 = (𝑀𝐵)))
105104necon3d 2963 . . . . . . . . . . . 12 (𝜑 → (𝐵 ≠ (𝑀𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵))
106105imp 406 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵)
10773adantr 480 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
1081, 3, 10, 84, 87, 93, 95, 94, 107btwnlng1 26884 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐿(𝑀𝐵)))
1091, 3, 10, 84, 87, 93, 94, 95, 106, 108tglineelsb2 26897 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
1101, 3, 10, 84, 95, 87, 106tglinecom 26900 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
111109, 110eqtr4d 2781 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
11292, 111breqtrd 5096 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
1131, 2, 3, 10, 84, 85, 86, 87, 112perpdrag 26993 . . . . . . 7 ((𝜑𝐵 ≠ (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
11483, 113pm2.61dane 3031 . . . . . 6 (𝜑 → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
1151, 2, 3, 10, 20, 4, 18, 16, 14israg 26962 . . . . . 6 (𝜑 → (⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))))
116114, 115mpbid 231 . . . . 5 (𝜑 → (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
117 eqidd 2739 . . . . . . 7 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
1181, 2, 3, 4, 7, 14, 15, 20, 16ismidb 27043 . . . . . . 7 (𝜑 → ((𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) ↔ (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵))))
119117, 118mpbird 256 . . . . . 6 (𝜑 → (𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))
120119oveq2d 7271 . . . . 5 (𝜑 → (𝑍 (𝑀𝐵)) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
121116, 120eqtr4d 2781 . . . 4 (𝜑 → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
122121adantr 480 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
12328oveq1d 7270 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝐴 𝐵))
12468, 122, 1233eqtr2d 2784 . 2 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
1254adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐺 ∈ TarskiG)
12622adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ∈ 𝑃)
12718adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍𝑃)
1288adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐴𝑃)
1291, 2, 3, 10, 20, 4, 18, 21, 12mircl 26926 . . . . 5 (𝜑 → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
130129adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
13112adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ 𝑃)
13214adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐵𝑃)
13315adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐵) ∈ 𝑃)
134 simpr 484 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ≠ 𝑍)
1351, 2, 3, 10, 20, 125, 127, 21, 128mirbtwn 26923 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆𝐴)𝐼𝐴))
1361, 2, 3, 10, 20, 125, 127, 21, 131mirbtwn 26923 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆‘(𝑀𝐴))𝐼(𝑀𝐴)))
137 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝑍 = 𝑍)
1384adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐺 ∈ TarskiG)
1398adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴𝑃)
14013adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1411, 2, 3, 4, 7, 8, 12midbtwn 27044 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
142141adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
143 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝑀𝐴))
144143oveq2d 7271 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴𝐼𝐴) = (𝐴𝐼(𝑀𝐴)))
145142, 144eleqtrrd 2842 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼𝐴))
1461, 2, 3, 138, 139, 140, 145axtgbtwnid 26731 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝐴(midG‘𝐺)(𝑀𝐴)))
147 eqidd 2739 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = 𝐴)
148137, 146, 147s3eqd 14505 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ = ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩)
1491, 2, 3, 10, 20, 4, 18, 8, 8ragtrivb 26967 . . . . . . . . . . . 12 (𝜑 → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
150149adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
151148, 150eqeltrrd 2840 . . . . . . . . . 10 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1524adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐺 ∈ TarskiG)
15361adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝑍𝐷)
15440adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
1558adantr 480 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴𝑃)
156 df-ne 2943 . . . . . . . . . . . . 13 (𝐴 ≠ (𝑀𝐴) ↔ ¬ 𝐴 = (𝑀𝐴))
15739simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))
158157orcomd 867 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 = (𝑀𝐴) ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴))))
159158orcanai 999 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 = (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
160156, 159sylan2b 593 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
16112adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝑀𝐴) ∈ 𝑃)
162 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴 ≠ (𝑀𝐴))
16313adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1644adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺 ∈ TarskiG)
1658adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴𝑃)
16612adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝑀𝐴) ∈ 𝑃)
1677adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺DimTarskiG≥2)
168 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴)
1691, 2, 3, 164, 167, 165, 166, 168midcgr 27045 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 𝐴) = (𝐴 (𝑀𝐴)))
170169eqcomd 2744 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 (𝑀𝐴)) = (𝐴 𝐴))
1711, 2, 3, 164, 165, 166, 165, 170axtgcgrid 26728 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴 = (𝑀𝐴))
172171ex 412 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴𝐴 = (𝑀𝐴)))
173172necon3d 2963 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ≠ (𝑀𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴))
174173imp 406 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴)
175141adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
1761, 3, 10, 152, 155, 161, 163, 162, 175btwnlng1 26884 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐿(𝑀𝐴)))
1771, 3, 10, 152, 155, 161, 162, 163, 174, 176tglineelsb2 26897 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
1781, 3, 10, 152, 163, 155, 174tglinecom 26900 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
179177, 178eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
180160, 179breqtrd 5096 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
1811, 2, 3, 10, 152, 153, 154, 155, 180perpdrag 26993 . . . . . . . . . 10 ((𝜑𝐴 ≠ (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
182151, 181pm2.61dane 3031 . . . . . . . . 9 (𝜑 → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1831, 2, 3, 10, 20, 4, 18, 13, 8israg 26962 . . . . . . . . 9 (𝜑 → (⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))))
184182, 183mpbid 231 . . . . . . . 8 (𝜑 → (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
185 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴)))
1861, 2, 3, 4, 7, 8, 12, 20, 13ismidb 27043 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴) ↔ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴))))
187185, 186mpbird 256 . . . . . . . . 9 (𝜑 → (𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))
188187oveq2d 7271 . . . . . . . 8 (𝜑 → (𝑍 (𝑀𝐴)) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
189184, 188eqtr4d 2781 . . . . . . 7 (𝜑 → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
1901, 2, 3, 10, 20, 4, 18, 21, 8mircgr 26922 . . . . . . 7 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
1911, 2, 3, 10, 20, 4, 18, 21, 12mircgr 26922 . . . . . . 7 (𝜑 → (𝑍 (𝑆‘(𝑀𝐴))) = (𝑍 (𝑀𝐴)))
192189, 190, 1913eqtr4d 2788 . . . . . 6 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
193192adantr 480 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
1941, 2, 3, 125, 127, 126, 127, 130, 193tgcgrcomlr 26745 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝑍) = ((𝑆‘(𝑀𝐴)) 𝑍))
195189adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
19621fveq1i 6757 . . . . . . . . . 10 (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴)))
1971, 2, 3, 4, 7, 8, 12, 21, 18mirmid 27048 . . . . . . . . . 10 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))))
1986eqcomi 2747 . . . . . . . . . . 11 ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍
1991, 2, 3, 4, 7, 13, 16, 20, 18ismidb 27043 . . . . . . . . . . 11 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍))
200198, 199mpbiri 257 . . . . . . . . . 10 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))))
201196, 197, 2003eqtr4a 2805 . . . . . . . . 9 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵)))
2021, 2, 3, 4, 7, 22, 129, 20, 16ismidb 27043 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)) ↔ ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵))))
203201, 202mpbird 256 . . . . . . . 8 (𝜑 → (𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)))
204119, 203oveq12d 7273 . . . . . . 7 (𝜑 → ((𝑀𝐵) (𝑆‘(𝑀𝐴))) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))))
205 eqid 2738 . . . . . . . 8 ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵))) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))
2061, 2, 3, 10, 20, 4, 16, 205, 14, 22miriso 26935 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))) = (𝐵 (𝑆𝐴)))
207204, 206eqtr2d 2779 . . . . . 6 (𝜑 → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
208207adantr 480 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
2091, 2, 3, 125, 132, 126, 133, 130, 208tgcgrcomlr 26745 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝐵) = ((𝑆‘(𝑀𝐴)) (𝑀𝐵)))
210121adantr 480 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
2111, 2, 3, 125, 126, 127, 128, 130, 127, 131, 132, 133, 134, 135, 136, 194, 195, 209, 210axtg5seg 26730 . . 3 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐴 𝐵) = ((𝑀𝐴) (𝑀𝐵)))
212211eqcomd 2744 . 2 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
213124, 212pm2.61dane 3031 1 (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  2c2 11958  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  DimTarskiGcstrkgld 26697  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917  ∟Gcrag 26958  ⟂Gcperpg 26960  midGcmid 27037  lInvGclmi 27038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-mir 26918  df-rag 26959  df-perpg 26961  df-mid 27039  df-lmi 27040
This theorem is referenced by:  lmiiso  27062
  Copyright terms: Public domain W3C validator