MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrextend Structured version   Visualization version   GIF version

Theorem tgcgrextend 28461
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) (Shortened by David A. Wheeler and Thierry Arnoux, 22-Apr-2020.)
Hypotheses
Ref Expression
tkgeom.p 𝑃 = (Base‘𝐺)
tkgeom.d = (dist‘𝐺)
tkgeom.i 𝐼 = (Itv‘𝐺)
tkgeom.g (𝜑𝐺 ∈ TarskiG)
tgcgrextend.a (𝜑𝐴𝑃)
tgcgrextend.b (𝜑𝐵𝑃)
tgcgrextend.c (𝜑𝐶𝑃)
tgcgrextend.d (𝜑𝐷𝑃)
tgcgrextend.e (𝜑𝐸𝑃)
tgcgrextend.f (𝜑𝐹𝑃)
tgcgrextend.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrextend.2 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
tgcgrextend.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgcgrextend.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Assertion
Ref Expression
tgcgrextend (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem tgcgrextend
StepHypRef Expression
1 tgcgrextend.4 . . . 4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
21adantr 480 . . 3 ((𝜑𝐴 = 𝐵) → (𝐵 𝐶) = (𝐸 𝐹))
3 simpr 484 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
43oveq1d 7361 . . 3 ((𝜑𝐴 = 𝐵) → (𝐴 𝐶) = (𝐵 𝐶))
5 tkgeom.p . . . . 5 𝑃 = (Base‘𝐺)
6 tkgeom.d . . . . 5 = (dist‘𝐺)
7 tkgeom.i . . . . 5 𝐼 = (Itv‘𝐺)
8 tkgeom.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
10 tgcgrextend.a . . . . . 6 (𝜑𝐴𝑃)
1110adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
12 tgcgrextend.b . . . . . 6 (𝜑𝐵𝑃)
1312adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵𝑃)
14 tgcgrextend.d . . . . . 6 (𝜑𝐷𝑃)
1514adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐷𝑃)
16 tgcgrextend.e . . . . . 6 (𝜑𝐸𝑃)
1716adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐸𝑃)
18 tgcgrextend.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
1918adantr 480 . . . . 5 ((𝜑𝐴 = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
205, 6, 7, 9, 11, 13, 15, 17, 19, 3tgcgreq 28458 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
2120oveq1d 7361 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 𝐹) = (𝐸 𝐹))
222, 4, 213eqtr4d 2776 . 2 ((𝜑𝐴 = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
238adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
24 tgcgrextend.c . . . 4 (𝜑𝐶𝑃)
2524adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐶𝑃)
2610adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑃)
27 tgcgrextend.f . . . 4 (𝜑𝐹𝑃)
2827adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐹𝑃)
2914adantr 480 . . 3 ((𝜑𝐴𝐵) → 𝐷𝑃)
3012adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵𝑃)
3116adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐸𝑃)
32 simpr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴𝐵)
33 tgcgrextend.1 . . . . 5 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
3433adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ (𝐴𝐼𝐶))
35 tgcgrextend.2 . . . . 5 (𝜑𝐸 ∈ (𝐷𝐼𝐹))
3635adantr 480 . . . 4 ((𝜑𝐴𝐵) → 𝐸 ∈ (𝐷𝐼𝐹))
3718adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
381adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝐵 𝐶) = (𝐸 𝐹))
395, 6, 7, 23, 26, 29tgcgrtriv 28460 . . . 4 ((𝜑𝐴𝐵) → (𝐴 𝐴) = (𝐷 𝐷))
405, 6, 7, 23, 26, 30, 29, 31, 37tgcgrcomlr 28456 . . . 4 ((𝜑𝐴𝐵) → (𝐵 𝐴) = (𝐸 𝐷))
415, 6, 7, 23, 26, 30, 25, 29, 31, 28, 26, 29, 32, 34, 36, 37, 38, 39, 40axtg5seg 28441 . . 3 ((𝜑𝐴𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
425, 6, 7, 23, 25, 26, 28, 29, 41tgcgrcomlr 28456 . 2 ((𝜑𝐴𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
4322, 42pm2.61dane 3015 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-trkgc 28424  df-trkgcb 28426  df-trkg 28429
This theorem is referenced by:  tgsegconeq  28462  tgcgrxfr  28494  lnext  28543  tgbtwnconn1lem1  28548  tgbtwnconn1lem2  28549  tgbtwnconn1lem3  28550  miriso  28646  mircgrextend  28658  midexlem  28668  opphllem  28711  flatcgra  28800  dfcgra2  28806
  Copyright terms: Public domain W3C validator