| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgidinside | Structured version Visualization version GIF version | ||
| Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lnxfr.d | ⊢ − = (dist‘𝐺) |
| tgidinside.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
| tgidinside.2 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| tgidinside.3 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| Ref | Expression |
|---|---|
| tgidinside | ⊢ (𝜑 → 𝑍 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | lnxfr.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tglngval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
| 8 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
| 10 | tgidinside.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 13 | 12 | oveq2d 7429 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌)) |
| 14 | 11, 13 | eleqtrrd 2836 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28411 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑍) |
| 16 | lnxfr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐴 ∈ 𝑃) |
| 18 | tgidinside.2 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 20 | 1, 2, 3, 5, 7, 9, 7, 17, 19, 15 | tgcgreq 28427 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴) |
| 21 | 15, 20 | eqtr3d 2771 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 = 𝐴) |
| 22 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 23 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
| 24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
| 25 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
| 27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
| 28 | lnxfr.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
| 29 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑃) |
| 30 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ 𝑃) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 33 | 1, 22, 3, 4, 6, 8, 25, 10 | btwncolg3 28502 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 35 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 36 | tgidinside.3 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| 38 | 1, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37 | lnid 28515 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 = 𝐴) |
| 39 | 21, 38 | pm2.61dane 3018 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 distcds 17283 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 cgrGccgrg 28455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-cgrg 28456 |
| This theorem is referenced by: miduniq 28630 ragflat2 28648 |
| Copyright terms: Public domain | W3C validator |