![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgidinside | Structured version Visualization version GIF version |
Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnxfr.d | ⊢ − = (dist‘𝐺) |
tgidinside.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
tgidinside.2 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
tgidinside.3 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
Ref | Expression |
---|---|
tgidinside | ⊢ (𝜑 → 𝑍 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | lnxfr.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tglngval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
8 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
10 | tgidinside.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
13 | 12 | oveq2d 7464 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌)) |
14 | 11, 13 | eleqtrrd 2847 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28492 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑍) |
16 | lnxfr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐴 ∈ 𝑃) |
18 | tgidinside.2 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
20 | 1, 2, 3, 5, 7, 9, 7, 17, 19, 15 | tgcgreq 28508 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴) |
21 | 15, 20 | eqtr3d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 = 𝐴) |
22 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
23 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
25 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
28 | lnxfr.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
29 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑃) |
30 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ 𝑃) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
33 | 1, 22, 3, 4, 6, 8, 25, 10 | btwncolg3 28583 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
35 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
36 | tgidinside.3 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
38 | 1, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37 | lnid 28596 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 = 𝐴) |
39 | 21, 38 | pm2.61dane 3035 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 cgrGccgrg 28536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-cgrg 28537 |
This theorem is referenced by: miduniq 28711 ragflat2 28729 |
Copyright terms: Public domain | W3C validator |