| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgidinside | Structured version Visualization version GIF version | ||
| Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lnxfr.d | ⊢ − = (dist‘𝐺) |
| tgidinside.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
| tgidinside.2 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| tgidinside.3 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| Ref | Expression |
|---|---|
| tgidinside | ⊢ (𝜑 → 𝑍 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | lnxfr.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tglngval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
| 8 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
| 10 | tgidinside.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 13 | 12 | oveq2d 7369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌)) |
| 14 | 11, 13 | eleqtrrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28429 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑍) |
| 16 | lnxfr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐴 ∈ 𝑃) |
| 18 | tgidinside.2 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 20 | 1, 2, 3, 5, 7, 9, 7, 17, 19, 15 | tgcgreq 28445 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴) |
| 21 | 15, 20 | eqtr3d 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 = 𝐴) |
| 22 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 23 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
| 24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
| 25 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
| 27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
| 28 | lnxfr.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
| 29 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑃) |
| 30 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ 𝑃) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 33 | 1, 22, 3, 4, 6, 8, 25, 10 | btwncolg3 28520 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 35 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 36 | tgidinside.3 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| 38 | 1, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37 | lnid 28533 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 = 𝐴) |
| 39 | 21, 38 | pm2.61dane 3012 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 cgrGccgrg 28473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-cgrg 28474 |
| This theorem is referenced by: miduniq 28648 ragflat2 28666 |
| Copyright terms: Public domain | W3C validator |