| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgidinside | Structured version Visualization version GIF version | ||
| Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
| lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lnxfr.d | ⊢ − = (dist‘𝐺) |
| tgidinside.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
| tgidinside.2 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| tgidinside.3 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| Ref | Expression |
|---|---|
| tgidinside | ⊢ (𝜑 → 𝑍 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | lnxfr.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | tglngval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
| 8 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
| 10 | tgidinside.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 13 | 12 | oveq2d 7405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌)) |
| 14 | 11, 13 | eleqtrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋)) |
| 15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 28399 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑍) |
| 16 | lnxfr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐴 ∈ 𝑃) |
| 18 | tgidinside.2 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 20 | 1, 2, 3, 5, 7, 9, 7, 17, 19, 15 | tgcgreq 28415 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴) |
| 21 | 15, 20 | eqtr3d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 = 𝐴) |
| 22 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 23 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
| 24 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
| 25 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
| 27 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
| 28 | lnxfr.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
| 29 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑃) |
| 30 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ 𝑃) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 33 | 1, 22, 3, 4, 6, 8, 25, 10 | btwncolg3 28490 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
| 35 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
| 36 | tgidinside.3 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
| 37 | 36 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
| 38 | 1, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37 | lnid 28503 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 = 𝐴) |
| 39 | 21, 38 | pm2.61dane 3013 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 distcds 17235 TarskiGcstrkg 28360 Itvcitv 28366 LineGclng 28367 cgrGccgrg 28443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-oadd 8440 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-s2 14820 df-s3 14821 df-trkgc 28381 df-trkgb 28382 df-trkgcb 28383 df-trkg 28386 df-cgrg 28444 |
| This theorem is referenced by: miduniq 28618 ragflat2 28636 |
| Copyright terms: Public domain | W3C validator |