Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgidinside | Structured version Visualization version GIF version |
Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
lnxfr.r | ⊢ ∼ = (cgrG‘𝐺) |
lnxfr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lnxfr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnxfr.d | ⊢ − = (dist‘𝐺) |
tgidinside.1 | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
tgidinside.2 | ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
tgidinside.3 | ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
Ref | Expression |
---|---|
tgidinside | ⊢ (𝜑 → 𝑍 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | lnxfr.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | tglngval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
8 | tgcolg.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
10 | tgidinside.1 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑌)) |
12 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
13 | 12 | oveq2d 7331 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋𝐼𝑋) = (𝑋𝐼𝑌)) |
14 | 11, 13 | eleqtrrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ (𝑋𝐼𝑋)) |
15 | 1, 2, 3, 5, 7, 9, 14 | axtgbtwnid 26936 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑍) |
16 | lnxfr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐴 ∈ 𝑃) |
18 | tgidinside.2 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝐴)) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
20 | 1, 2, 3, 5, 7, 9, 7, 17, 19, 15 | tgcgreq 26952 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴) |
21 | 15, 20 | eqtr3d 2779 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 = 𝐴) |
22 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
23 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
24 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
25 | tglngval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
26 | 25 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
27 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
28 | lnxfr.r | . . 3 ⊢ ∼ = (cgrG‘𝐺) | |
29 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑃) |
30 | lnxfr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
31 | 30 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐵 ∈ 𝑃) |
32 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
33 | 1, 22, 3, 4, 6, 8, 25, 10 | btwncolg3 27027 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
34 | 33 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍)) |
35 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 − 𝑍) = (𝑋 − 𝐴)) |
36 | tgidinside.3 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 − 𝐴)) | |
37 | 36 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 − 𝑍) = (𝑌 − 𝐴)) |
38 | 1, 22, 3, 23, 24, 26, 27, 28, 29, 31, 2, 32, 34, 35, 37 | lnid 27040 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 = 𝐴) |
39 | 21, 38 | pm2.61dane 3030 | 1 ⊢ (𝜑 → 𝑍 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 distcds 17041 TarskiGcstrkg 26897 Itvcitv 26903 LineGclng 26904 cgrGccgrg 26980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-oadd 8348 df-er 8546 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-fz 13313 df-fzo 13456 df-hash 14118 df-word 14290 df-concat 14346 df-s1 14373 df-s2 14633 df-s3 14634 df-trkgc 26918 df-trkgb 26919 df-trkgcb 26920 df-trkg 26923 df-cgrg 26981 |
This theorem is referenced by: miduniq 27155 ragflat2 27173 |
Copyright terms: Public domain | W3C validator |