Step | Hyp | Ref
| Expression |
1 | | isleag.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | cgrg3col4.l |
. . . . 5
⊢ 𝐿 = (LineG‘𝐺) |
3 | | eqid 2778 |
. . . . 5
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
4 | | isleag.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
6 | | isleag.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
8 | | isleag.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
10 | | cgrg3col4.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
11 | 10 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
12 | | eqid 2778 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
13 | | isleag.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
14 | 13 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
15 | | isleag.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
16 | 15 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
17 | | eqid 2778 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
18 | | simpr 479 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
19 | | isleag.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
20 | | isleag.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
21 | | cgrg3col4.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
22 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp1 25871 |
. . . . . 6
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
23 | 22 | ad2antrr 716 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
24 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23 | lnext 25918 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
25 | 21 | ad4antr 722 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
26 | 5 | ad2antrr 716 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐺 ∈ TarskiG) |
27 | 11 | ad2antrr 716 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑋 ∈ 𝑃) |
28 | 7 | ad2antrr 716 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 ∈ 𝑃) |
29 | | simplr 759 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑦 ∈ 𝑃) |
30 | 14 | ad2antrr 716 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 ∈ 𝑃) |
31 | 9 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐵 ∈ 𝑃) |
32 | 16 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐸 ∈ 𝑃) |
33 | | simpr 479 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
34 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp3 25873 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
35 | 1, 17, 3, 26, 27, 28, 29, 30, 34 | tgcgrcomlr 25831 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
36 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp2 25872 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
37 | 19 | ad4antr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐶 ∈ 𝑃) |
38 | 20 | ad4antr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐹 ∈ 𝑃) |
39 | | simpr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) |
40 | 39 | ad3antrrr 720 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 = 𝐶) |
41 | 40 | oveq2d 6938 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
42 | 4 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
43 | 6 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
44 | 19 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶 ∈ 𝑃) |
45 | 13 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
46 | 20 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐹 ∈ 𝑃) |
47 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp3 25873 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷)) |
48 | 1, 17, 3, 4, 19, 6,
20, 13, 47 | tgcgrcomlr 25831 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
49 | 48 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
50 | 1, 17, 3, 42, 43, 44, 45, 46, 49, 39 | tgcgreq 25833 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 = 𝐹) |
51 | 50 | ad3antrrr 720 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 = 𝐹) |
52 | 51 | oveq2d 6938 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
53 | 34, 41, 52 | 3eqtr3d 2822 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
54 | 1, 17, 3, 26, 27, 37, 29, 38, 53 | tgcgrcomlr 25831 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
55 | 35, 36, 54 | 3jca 1119 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
56 | 25, 55 | jca 507 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))) |
57 | 1, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29 | tgcgr4 25882 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
58 | 56, 57 | mpbird 249 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
59 | 58 | ex 403 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
60 | 59 | reximdva 3198 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
61 | 24, 60 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
62 | | eqid 2778 |
. . . . . 6
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
63 | 42 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
64 | 63 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG) |
65 | 8 | ad2antrr 716 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
66 | 65 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵 ∈ 𝑃) |
67 | 43 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
68 | 67 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴 ∈ 𝑃) |
69 | 10 | ad2antrr 716 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
70 | 69 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋 ∈ 𝑃) |
71 | 15 | ad2antrr 716 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
72 | 71 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸 ∈ 𝑃) |
73 | 45 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
74 | 73 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ∈ 𝑃) |
75 | | simplr 759 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥 ∈ 𝑃) |
76 | | simpr 479 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
77 | 76 | ad2antrr 716 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
78 | | simpr 479 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
79 | 22 | ad2antrr 716 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
80 | 1, 3, 2, 63, 65, 67, 69, 76 | ncolne1 25976 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ≠ 𝐴) |
81 | 80 | necomd 3024 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ≠ 𝐵) |
82 | 1, 17, 3, 63, 67, 65, 73, 71, 79, 81 | tgcgrneq 25834 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ≠ 𝐸) |
83 | 82 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ≠ 𝐸) |
84 | 83 | neneqd 2974 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸) |
85 | 78, 84 | jca 507 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸)) |
86 | | ioran 969 |
. . . . . . . . 9
⊢ (¬
(𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸)) |
87 | 85, 86 | sylibr 226 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
88 | 1, 2, 3, 64, 74, 72, 75, 87 | ncolcom 25912 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
89 | 1, 2, 3, 64, 72, 74, 75, 88 | ncolrot1 25913 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥)) |
90 | 1, 17, 3, 4, 6, 8, 13, 15, 22 | tgcgrcomlr 25831 |
. . . . . . 7
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
91 | 90 | ad4antr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
92 | 1, 17, 3, 2, 62, 64, 66, 68, 70, 72, 74, 75, 77, 89, 91 | trgcopy 26152 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥)) |
93 | 21 | ad6antr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
94 | 64 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐺 ∈ TarskiG) |
95 | 66 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐵 ∈ 𝑃) |
96 | 68 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 ∈ 𝑃) |
97 | 70 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑋 ∈ 𝑃) |
98 | 72 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐸 ∈ 𝑃) |
99 | 74 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 ∈ 𝑃) |
100 | | simplr 759 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑦 ∈ 𝑃) |
101 | | simpr 479 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) |
102 | 1, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101 | cgr3simp2 25872 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
103 | 1, 17, 3, 12, 94, 95, 96, 97, 98, 99, 100, 101 | cgr3simp3 25873 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
104 | 1, 17, 3, 94, 97, 95, 100, 98, 103 | tgcgrcomlr 25831 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
105 | 44 | ad5antr 724 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐶 ∈ 𝑃) |
106 | 46 | ad5antr 724 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐹 ∈ 𝑃) |
107 | 1, 17, 3, 94, 96, 97, 99, 100, 102 | tgcgrcomlr 25831 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
108 | | simp-6r 778 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 = 𝐶) |
109 | 108 | oveq2d 6938 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
110 | 50 | ad5antr 724 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 = 𝐹) |
111 | 110 | oveq2d 6938 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
112 | 107, 109,
111 | 3eqtr3d 2822 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
113 | 1, 17, 3, 94, 97, 105, 100, 106, 112 | tgcgrcomlr 25831 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
114 | 102, 104,
113 | 3jca 1119 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
115 | 93, 114 | jca 507 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))) |
116 | 1, 17, 3, 12, 94, 96, 95, 105, 97, 99, 98, 106, 100 | tgcgr4 25882 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
117 | 115, 116 | mpbird 249 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
118 | 117 | ex 403 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
119 | 118 | adantrd 487 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → ((〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
120 | 119 | reximdva 3198 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
121 | 92, 120 | mpd 15 |
. . . 4
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
122 | 1, 2, 3, 63, 67, 69, 65, 76 | ncoltgdim2 25916 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2) |
123 | 1, 3, 2, 63, 122, 73, 71, 82 | tglowdim2ln 26002 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥 ∈ 𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
124 | 121, 123 | r19.29a 3264 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
125 | 61, 124 | pm2.61dan 803 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
126 | | cgrg3col4.2 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
127 | 1, 2, 3, 4, 6, 19,
10, 126 | colcom 25909 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
128 | 1, 2, 3, 4, 19, 6,
10, 127 | colrot1 25910 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
129 | 1, 2, 3, 4, 6, 19,
10, 12, 13, 20, 17, 128, 48 | lnext 25918 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
130 | 129 | adantr 474 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
131 | 21 | ad3antrrr 720 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
132 | 4 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐺 ∈ TarskiG) |
133 | 10 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑋 ∈ 𝑃) |
134 | 6 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ∈ 𝑃) |
135 | | simplr 759 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑦 ∈ 𝑃) |
136 | 13 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐷 ∈ 𝑃) |
137 | 19 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐶 ∈ 𝑃) |
138 | 20 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐹 ∈ 𝑃) |
139 | | simpr 479 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
140 | 1, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139 | cgr3simp3 25873 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
141 | 1, 17, 3, 132, 133, 134, 135, 136, 140 | tgcgrcomlr 25831 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
142 | 8 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐵 ∈ 𝑃) |
143 | 15 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐸 ∈ 𝑃) |
144 | 128 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
145 | 22 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
146 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp2 25872 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹)) |
147 | 1, 17, 3, 4, 8, 19,
15, 20, 146 | tgcgrcomlr 25831 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
148 | 147 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
149 | | simpllr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ≠ 𝐶) |
150 | 1, 2, 3, 132, 134, 137, 133, 12, 136, 138, 17, 142, 135, 143, 144, 139, 145, 148, 149 | tgfscgr 25919 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
151 | 1, 17, 3, 132, 133, 142, 135, 143, 150 | tgcgrcomlr 25831 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
152 | 1, 17, 3, 12, 132, 134, 137, 133, 136, 138, 135, 139 | cgr3simp2 25872 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
153 | 141, 151,
152 | 3jca 1119 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
154 | 131, 153 | jca 507 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))) |
155 | 1, 17, 3, 12, 132, 134, 142, 137, 133, 136, 143, 138, 135 | tgcgr4 25882 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
156 | 154, 155 | mpbird 249 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
157 | 156 | ex 403 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
158 | 157 | reximdva 3198 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
159 | 130, 158 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
160 | 125, 159 | pm2.61dane 3057 |
1
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |