MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   GIF version

Theorem cgrg3col4 28879
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
cgrg3col4.l 𝐿 = (LineG‘𝐺)
cgrg3col4.x (𝜑𝑋𝑃)
cgrg3col4.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrg3col4.2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Assertion
Ref Expression
cgrg3col4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝐿   𝑦,𝑃   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cgrg3col4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgrg3col4.l . . . . 5 𝐿 = (LineG‘𝐺)
3 eqid 2740 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
4 isleag.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6 isleag.a . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
8 isleag.b . . . . . 6 (𝜑𝐵𝑃)
98ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
10 cgrg3col4.x . . . . . 6 (𝜑𝑋𝑃)
1110ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
12 eqid 2740 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
13 isleag.d . . . . . 6 (𝜑𝐷𝑃)
1413ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
15 isleag.e . . . . . 6 (𝜑𝐸𝑃)
1615ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
17 eqid 2740 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
18 simpr 484 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
19 isleag.c . . . . . . 7 (𝜑𝐶𝑃)
20 isleag.f . . . . . . 7 (𝜑𝐹𝑃)
21 cgrg3col4.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 28546 . . . . . 6 (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
2322ad2antrr 725 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 28593 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
2521ad4antr 731 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
265ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
2711ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑋𝑃)
287ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
29 simplr 768 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
3014ad2antrr 725 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
319ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
3216ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
33 simpr 484 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 28548 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 28506 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 28547 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
3719ad4antr 731 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐶𝑃)
3820ad4antr 731 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
39 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
4039ad3antrrr 729 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴 = 𝐶)
4140oveq2d 7464 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
424adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
436adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
4419adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐶𝑃)
4513adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
4620adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐹𝑃)
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 28548 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷))
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 28506 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 28508 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐷 = 𝐹)
5150ad3antrrr 729 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷 = 𝐹)
5251oveq2d 7464 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
5334, 41, 523eqtr3d 2788 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 28506 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
5535, 36, 543jca 1128 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
561, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 28557 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
5725, 55, 56mpbir2and 712 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
5857ex 412 . . . . 5 ((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
5958reximdva 3174 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
6024, 59mpd 15 . . 3 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
61 eqid 2740 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
624ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6362ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
648ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
6564ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
666ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
6766ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
6810ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
6968ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋𝑃)
7015ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
7170ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
7213ad2antrr 725 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
7372ad2antrr 725 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
74 simplr 768 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥𝑃)
75 simpllr 775 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
76 simpr 484 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
7722ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
791, 3, 2, 62, 64, 66, 68, 78ncolne1 28651 . . . . . . . . . . . . 13 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝐴)
8079necomd 3002 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝐵)
811, 17, 3, 62, 66, 64, 72, 70, 77, 80tgcgrneq 28509 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝐸)
8281ad2antrr 725 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝐸)
8382neneqd 2951 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸)
84 ioran 984 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
8576, 83, 84sylanbrc 582 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
861, 2, 3, 63, 73, 71, 74, 85ncolcom 28587 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
871, 2, 3, 63, 71, 73, 74, 86ncolrot1 28588 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥))
881, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 28506 . . . . . . 7 (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
8988ad4antr 731 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
901, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89trgcopy 28830 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥))
9121ad6antr 735 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
9263ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
9365ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐵𝑃)
9467ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴𝑃)
9569ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑋𝑃)
9671ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐸𝑃)
9773ad2antrr 725 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷𝑃)
98 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑦𝑃)
99 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩)
1001, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp2 28547 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1011, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp3 28548 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1021, 17, 3, 92, 95, 93, 98, 96, 101tgcgrcomlr 28506 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
10344ad5antr 733 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐶𝑃)
10446ad5antr 733 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐹𝑃)
1051, 17, 3, 92, 94, 95, 97, 98, 100tgcgrcomlr 28506 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
106 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴 = 𝐶)
107106oveq2d 7464 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
10850ad5antr 733 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷 = 𝐹)
109108oveq2d 7464 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
110105, 107, 1093eqtr3d 2788 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
1111, 17, 3, 92, 95, 103, 98, 104, 110tgcgrcomlr 28506 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
112100, 102, 1113jca 1128 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1131, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98tgcgr4 28557 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
11491, 112, 113mpbir2and 712 . . . . . . . 8 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
115114ex 412 . . . . . . 7 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
116115adantrd 491 . . . . . 6 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → ((⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
117116reximdva 3174 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
11890, 117mpd 15 . . . 4 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
1191, 2, 3, 62, 66, 68, 64, 78ncoltgdim2 28591 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2)
1201, 3, 2, 62, 119, 72, 70, 81tglowdim2ln 28677 . . . 4 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸))
121118, 120r19.29a 3168 . . 3 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
12260, 121pm2.61dan 812 . 2 ((𝜑𝐴 = 𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
123 cgrg3col4.2 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1241, 2, 3, 4, 6, 19, 10, 123colcom 28584 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
1251, 2, 3, 4, 19, 6, 10, 124colrot1 28585 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1261, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 125, 48lnext 28593 . . . 4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
127126adantr 480 . . 3 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
12821ad3antrrr 729 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1294ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐺 ∈ TarskiG)
13010ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑋𝑃)
1316ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝑃)
132 simplr 768 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑦𝑃)
13313ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐷𝑃)
13419ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐶𝑃)
13520ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐹𝑃)
136 simpr 484 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
1371, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp3 28548 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
1381, 17, 3, 129, 130, 131, 132, 133, 137tgcgrcomlr 28506 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1398ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐵𝑃)
14015ad3antrrr 729 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐸𝑃)
141125ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
14222ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
1431, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 28547 . . . . . . . . . . 11 (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹))
1441, 17, 3, 4, 8, 19, 15, 20, 143tgcgrcomlr 28506 . . . . . . . . . 10 (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
145144ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
146 simpllr 775 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝐶)
1471, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146tgfscgr 28594 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1481, 17, 3, 129, 130, 139, 132, 140, 147tgcgrcomlr 28506 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
1491, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp2 28547 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
150138, 148, 1493jca 1128 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1511, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132tgcgr4 28557 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
152128, 150, 151mpbir2and 712 . . . . 5 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
153152ex 412 . . . 4 (((𝜑𝐴𝐶) ∧ 𝑦𝑃) → (⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
154153reximdva 3174 . . 3 ((𝜑𝐴𝐶) → (∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
155127, 154mpd 15 . 2 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
156122, 155pm2.61dane 3035 1 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  ⟨“cs3 14891  ⟨“cs4 14892  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  cgrGccgrg 28536  hlGchlg 28626  hpGchpg 28783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkgld 28478  df-trkg 28479  df-cgrg 28537  df-ismt 28559  df-leg 28609  df-hlg 28627  df-mir 28679  df-rag 28720  df-perpg 28722  df-hpg 28784  df-mid 28800  df-lmi 28801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator