MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   GIF version

Theorem cgrg3col4 28780
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
cgrg3col4.l 𝐿 = (LineG‘𝐺)
cgrg3col4.x (𝜑𝑋𝑃)
cgrg3col4.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrg3col4.2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Assertion
Ref Expression
cgrg3col4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝐿   𝑦,𝑃   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cgrg3col4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgrg3col4.l . . . . 5 𝐿 = (LineG‘𝐺)
3 eqid 2729 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
4 isleag.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6 isleag.a . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
8 isleag.b . . . . . 6 (𝜑𝐵𝑃)
98ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
10 cgrg3col4.x . . . . . 6 (𝜑𝑋𝑃)
1110ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
12 eqid 2729 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
13 isleag.d . . . . . 6 (𝜑𝐷𝑃)
1413ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
15 isleag.e . . . . . 6 (𝜑𝐸𝑃)
1615ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
17 eqid 2729 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
18 simpr 484 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
19 isleag.c . . . . . . 7 (𝜑𝐶𝑃)
20 isleag.f . . . . . . 7 (𝜑𝐹𝑃)
21 cgrg3col4.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 28447 . . . . . 6 (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
2322ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 28494 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
2521ad4antr 732 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
265ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
2711ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑋𝑃)
287ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
29 simplr 768 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
3014ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
319ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
3216ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
33 simpr 484 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 28449 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 28407 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 28448 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
3719ad4antr 732 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐶𝑃)
3820ad4antr 732 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
39 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
4039ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴 = 𝐶)
4140oveq2d 7403 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
424adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
436adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
4419adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐶𝑃)
4513adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
4620adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐹𝑃)
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 28449 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷))
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 28407 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 28409 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐷 = 𝐹)
5150ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷 = 𝐹)
5251oveq2d 7403 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
5334, 41, 523eqtr3d 2772 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 28407 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
5535, 36, 543jca 1128 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
561, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 28458 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
5725, 55, 56mpbir2and 713 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
5857ex 412 . . . . 5 ((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
5958reximdva 3146 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
6024, 59mpd 15 . . 3 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
61 eqid 2729 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
624ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6362ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
648ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
6564ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
666ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
6766ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
6810ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
6968ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋𝑃)
7015ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
7170ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
7213ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
7372ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
74 simplr 768 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥𝑃)
75 simpllr 775 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
76 simpr 484 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
7722ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
791, 3, 2, 62, 64, 66, 68, 78ncolne1 28552 . . . . . . . . . . . . 13 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝐴)
8079necomd 2980 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝐵)
811, 17, 3, 62, 66, 64, 72, 70, 77, 80tgcgrneq 28410 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝐸)
8281ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝐸)
8382neneqd 2930 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸)
84 ioran 985 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
8576, 83, 84sylanbrc 583 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
861, 2, 3, 63, 73, 71, 74, 85ncolcom 28488 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
871, 2, 3, 63, 71, 73, 74, 86ncolrot1 28489 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥))
881, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 28407 . . . . . . 7 (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
8988ad4antr 732 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
901, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89trgcopy 28731 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥))
9121ad6antr 736 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
9263ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
9365ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐵𝑃)
9467ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴𝑃)
9569ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑋𝑃)
9671ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐸𝑃)
9773ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷𝑃)
98 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑦𝑃)
99 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩)
1001, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp2 28448 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1011, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp3 28449 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1021, 17, 3, 92, 95, 93, 98, 96, 101tgcgrcomlr 28407 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
10344ad5antr 734 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐶𝑃)
10446ad5antr 734 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐹𝑃)
1051, 17, 3, 92, 94, 95, 97, 98, 100tgcgrcomlr 28407 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
106 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴 = 𝐶)
107106oveq2d 7403 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
10850ad5antr 734 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷 = 𝐹)
109108oveq2d 7403 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
110105, 107, 1093eqtr3d 2772 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
1111, 17, 3, 92, 95, 103, 98, 104, 110tgcgrcomlr 28407 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
112100, 102, 1113jca 1128 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1131, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98tgcgr4 28458 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
11491, 112, 113mpbir2and 713 . . . . . . . 8 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
115114ex 412 . . . . . . 7 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
116115adantrd 491 . . . . . 6 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → ((⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
117116reximdva 3146 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
11890, 117mpd 15 . . . 4 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
1191, 2, 3, 62, 66, 68, 64, 78ncoltgdim2 28492 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2)
1201, 3, 2, 62, 119, 72, 70, 81tglowdim2ln 28578 . . . 4 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸))
121118, 120r19.29a 3141 . . 3 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
12260, 121pm2.61dan 812 . 2 ((𝜑𝐴 = 𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
123 cgrg3col4.2 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1241, 2, 3, 4, 6, 19, 10, 123colcom 28485 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
1251, 2, 3, 4, 19, 6, 10, 124colrot1 28486 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1261, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 125, 48lnext 28494 . . . 4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
127126adantr 480 . . 3 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
12821ad3antrrr 730 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1294ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐺 ∈ TarskiG)
13010ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑋𝑃)
1316ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝑃)
132 simplr 768 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑦𝑃)
13313ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐷𝑃)
13419ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐶𝑃)
13520ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐹𝑃)
136 simpr 484 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
1371, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp3 28449 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
1381, 17, 3, 129, 130, 131, 132, 133, 137tgcgrcomlr 28407 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1398ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐵𝑃)
14015ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐸𝑃)
141125ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
14222ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
1431, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 28448 . . . . . . . . . . 11 (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹))
1441, 17, 3, 4, 8, 19, 15, 20, 143tgcgrcomlr 28407 . . . . . . . . . 10 (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
145144ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
146 simpllr 775 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝐶)
1471, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146tgfscgr 28495 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1481, 17, 3, 129, 130, 139, 132, 140, 147tgcgrcomlr 28407 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
1491, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp2 28448 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
150138, 148, 1493jca 1128 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1511, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132tgcgr4 28458 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
152128, 150, 151mpbir2and 713 . . . . 5 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
153152ex 412 . . . 4 (((𝜑𝐴𝐶) ∧ 𝑦𝑃) → (⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
154153reximdva 3146 . . 3 ((𝜑𝐴𝐶) → (∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
155127, 154mpd 15 . 2 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
156122, 155pm2.61dane 3012 1 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  ⟨“cs3 14808  ⟨“cs4 14809  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  cgrGccgrg 28437  hlGchlg 28527  hpGchpg 28684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-s4 14816  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkgld 28379  df-trkg 28380  df-cgrg 28438  df-ismt 28460  df-leg 28510  df-hlg 28528  df-mir 28580  df-rag 28621  df-perpg 28623  df-hpg 28685  df-mid 28701  df-lmi 28702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator