MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   GIF version

Theorem cgrg3col4 28876
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
cgrg3col4.l 𝐿 = (LineG‘𝐺)
cgrg3col4.x (𝜑𝑋𝑃)
cgrg3col4.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgrg3col4.2 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
Assertion
Ref Expression
cgrg3col4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝐿   𝑦,𝑃   𝑦,𝑋   𝜑,𝑦

Proof of Theorem cgrg3col4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5 𝑃 = (Base‘𝐺)
2 cgrg3col4.l . . . . 5 𝐿 = (LineG‘𝐺)
3 eqid 2735 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
4 isleag.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6 isleag.a . . . . . 6 (𝜑𝐴𝑃)
76ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
8 isleag.b . . . . . 6 (𝜑𝐵𝑃)
98ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
10 cgrg3col4.x . . . . . 6 (𝜑𝑋𝑃)
1110ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
12 eqid 2735 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
13 isleag.d . . . . . 6 (𝜑𝐷𝑃)
1413ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
15 isleag.e . . . . . 6 (𝜑𝐸𝑃)
1615ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
17 eqid 2735 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
18 simpr 484 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
19 isleag.c . . . . . . 7 (𝜑𝐶𝑃)
20 isleag.f . . . . . . 7 (𝜑𝐹𝑃)
21 cgrg3col4.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 28543 . . . . . 6 (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
2322ad2antrr 726 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 28590 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
2521ad4antr 732 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
265ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
2711ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑋𝑃)
287ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
29 simplr 769 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
3014ad2antrr 726 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
319ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
3216ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
33 simpr 484 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 28545 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 28503 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 28544 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
3719ad4antr 732 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐶𝑃)
3820ad4antr 732 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
39 simpr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
4039ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴 = 𝐶)
4140oveq2d 7447 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
424adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
436adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐴𝑃)
4419adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐶𝑃)
4513adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐷𝑃)
4620adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → 𝐹𝑃)
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 28545 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷))
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 28503 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹))
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 28505 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐶) → 𝐷 = 𝐹)
5150ad3antrrr 730 . . . . . . . . . . 11 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷 = 𝐹)
5251oveq2d 7447 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
5334, 41, 523eqtr3d 2783 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 28503 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
5535, 36, 543jca 1127 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
561, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 28554 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
5725, 55, 56mpbir2and 713 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
5857ex 412 . . . . 5 ((((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦𝑃) → (⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
5958reximdva 3166 . . . 4 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦𝑃 ⟨“𝐴𝐵𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
6024, 59mpd 15 . . 3 (((𝜑𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
61 eqid 2735 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
624ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG)
6362ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
648ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝑃)
6564ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
666ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝑃)
6766ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
6810ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋𝑃)
6968ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋𝑃)
7015ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸𝑃)
7170ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
7213ad2antrr 726 . . . . . . 7 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝑃)
7372ad2antrr 726 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
74 simplr 769 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥𝑃)
75 simpllr 776 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
76 simpr 484 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸))
7722ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
791, 3, 2, 62, 64, 66, 68, 78ncolne1 28648 . . . . . . . . . . . . 13 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵𝐴)
8079necomd 2994 . . . . . . . . . . . 12 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴𝐵)
811, 17, 3, 62, 66, 64, 72, 70, 77, 80tgcgrneq 28506 . . . . . . . . . . 11 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷𝐸)
8281ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷𝐸)
8382neneqd 2943 . . . . . . . . 9 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸)
84 ioran 985 . . . . . . . . 9 (¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
8576, 83, 84sylanbrc 583 . . . . . . . 8 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
861, 2, 3, 63, 73, 71, 74, 85ncolcom 28584 . . . . . . 7 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
871, 2, 3, 63, 71, 73, 74, 86ncolrot1 28585 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥))
881, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 28503 . . . . . . 7 (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
8988ad4antr 732 . . . . . 6 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷))
901, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89trgcopy 28827 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥))
9121ad6antr 736 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
9263ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐺 ∈ TarskiG)
9365ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐵𝑃)
9467ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴𝑃)
9569ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑋𝑃)
9671ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐸𝑃)
9773ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷𝑃)
98 simplr 769 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝑦𝑃)
99 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩)
1001, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp2 28544 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1011, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp3 28545 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1021, 17, 3, 92, 95, 93, 98, 96, 101tgcgrcomlr 28503 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
10344ad5antr 734 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐶𝑃)
10446ad5antr 734 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐹𝑃)
1051, 17, 3, 92, 94, 95, 97, 98, 100tgcgrcomlr 28503 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
106 simp-6r 788 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐴 = 𝐶)
107106oveq2d 7447 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶))
10850ad5antr 734 . . . . . . . . . . . . 13 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → 𝐷 = 𝐹)
109108oveq2d 7447 . . . . . . . . . . . 12 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹))
110105, 107, 1093eqtr3d 2783 . . . . . . . . . . 11 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹))
1111, 17, 3, 92, 95, 103, 98, 104, 110tgcgrcomlr 28503 . . . . . . . . . 10 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
112100, 102, 1113jca 1127 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1131, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98tgcgr4 28554 . . . . . . . . 9 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
11491, 112, 113mpbir2and 713 . . . . . . . 8 (((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) ∧ ⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
115114ex 412 . . . . . . 7 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
116115adantrd 491 . . . . . 6 ((((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦𝑃) → ((⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
117116reximdva 3166 . . . . 5 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦𝑃 (⟨“𝐵𝐴𝑋”⟩(cgrG‘𝐺)⟨“𝐸𝐷𝑦”⟩ ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
11890, 117mpd 15 . . . 4 (((((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
1191, 2, 3, 62, 66, 68, 64, 78ncoltgdim2 28588 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2)
1201, 3, 2, 62, 119, 72, 70, 81tglowdim2ln 28674 . . . 4 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸))
121118, 120r19.29a 3160 . . 3 (((𝜑𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
12260, 121pm2.61dan 813 . 2 ((𝜑𝐴 = 𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
123 cgrg3col4.2 . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1241, 2, 3, 4, 6, 19, 10, 123colcom 28581 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
1251, 2, 3, 4, 19, 6, 10, 124colrot1 28582 . . . . 5 (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1261, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 125, 48lnext 28590 . . . 4 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
127126adantr 480 . . 3 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
12821ad3antrrr 730 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1294ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐺 ∈ TarskiG)
13010ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑋𝑃)
1316ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝑃)
132 simplr 769 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝑦𝑃)
13313ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐷𝑃)
13419ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐶𝑃)
13520ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐹𝑃)
136 simpr 484 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩)
1371, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp3 28545 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷))
1381, 17, 3, 129, 130, 131, 132, 133, 137tgcgrcomlr 28503 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦))
1398ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐵𝑃)
14015ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐸𝑃)
141125ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
14222ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸))
1431, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 28544 . . . . . . . . . . 11 (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹))
1441, 17, 3, 4, 8, 19, 15, 20, 143tgcgrcomlr 28503 . . . . . . . . . 10 (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
145144ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸))
146 simpllr 776 . . . . . . . . 9 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → 𝐴𝐶)
1471, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146tgfscgr 28591 . . . . . . . 8 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸))
1481, 17, 3, 129, 130, 139, 132, 140, 147tgcgrcomlr 28503 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦))
1491, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp2 28544 . . . . . . 7 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))
150138, 148, 1493jca 1127 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))
1511, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132tgcgr4 28554 . . . . . 6 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → (⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)))))
152128, 150, 151mpbir2and 713 . . . . 5 ((((𝜑𝐴𝐶) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩) → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
153152ex 412 . . . 4 (((𝜑𝐴𝐶) ∧ 𝑦𝑃) → (⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
154153reximdva 3166 . . 3 ((𝜑𝐴𝐶) → (∃𝑦𝑃 ⟨“𝐴𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐹𝑦”⟩ → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩))
155127, 154mpd 15 . 2 ((𝜑𝐴𝐶) → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
156122, 155pm2.61dane 3027 1 (𝜑 → ∃𝑦𝑃 ⟨“𝐴𝐵𝐶𝑋”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹𝑦”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  ⟨“cs3 14878  ⟨“cs4 14879  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  cgrGccgrg 28533  hlGchlg 28623  hpGchpg 28780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-s4 14886  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkgld 28475  df-trkg 28476  df-cgrg 28534  df-ismt 28556  df-leg 28606  df-hlg 28624  df-mir 28676  df-rag 28717  df-perpg 28719  df-hpg 28781  df-mid 28797  df-lmi 28798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator