Step | Hyp | Ref
| Expression |
1 | | isleag.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
2 | | cgrg3col4.l |
. . . . 5
⊢ 𝐿 = (LineG‘𝐺) |
3 | | eqid 2738 |
. . . . 5
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
4 | | isleag.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
6 | | isleag.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
7 | 6 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
8 | | isleag.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
10 | | cgrg3col4.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
11 | 10 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
12 | | eqid 2738 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
13 | | isleag.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
14 | 13 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
15 | | isleag.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
16 | 15 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
17 | | eqid 2738 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
18 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
19 | | isleag.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
20 | | isleag.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
21 | | cgrg3col4.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
22 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp1 26785 |
. . . . . 6
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
23 | 22 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
24 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23 | lnext 26832 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
25 | 21 | ad4antr 728 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
26 | 5 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐺 ∈ TarskiG) |
27 | 11 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑋 ∈ 𝑃) |
28 | 7 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 ∈ 𝑃) |
29 | | simplr 765 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑦 ∈ 𝑃) |
30 | 14 | ad2antrr 722 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 ∈ 𝑃) |
31 | 9 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐵 ∈ 𝑃) |
32 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐸 ∈ 𝑃) |
33 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
34 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp3 26787 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
35 | 1, 17, 3, 26, 27, 28, 29, 30, 34 | tgcgrcomlr 26745 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
36 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp2 26786 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
37 | 19 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐶 ∈ 𝑃) |
38 | 20 | ad4antr 728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐹 ∈ 𝑃) |
39 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) |
40 | 39 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 = 𝐶) |
41 | 40 | oveq2d 7271 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
42 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
43 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
44 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶 ∈ 𝑃) |
45 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
46 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐹 ∈ 𝑃) |
47 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp3 26787 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷)) |
48 | 1, 17, 3, 4, 19, 6,
20, 13, 47 | tgcgrcomlr 26745 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
50 | 1, 17, 3, 42, 43, 44, 45, 46, 49, 39 | tgcgreq 26747 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 = 𝐹) |
51 | 50 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 = 𝐹) |
52 | 51 | oveq2d 7271 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
53 | 34, 41, 52 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
54 | 1, 17, 3, 26, 27, 37, 29, 38, 53 | tgcgrcomlr 26745 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
55 | 35, 36, 54 | 3jca 1126 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
56 | 1, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29 | tgcgr4 26796 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
57 | 25, 55, 56 | mpbir2and 709 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
58 | 57 | ex 412 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
59 | 58 | reximdva 3202 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
60 | 24, 59 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
61 | | eqid 2738 |
. . . . . 6
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
62 | 4 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
63 | 62 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG) |
64 | 8 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
65 | 64 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵 ∈ 𝑃) |
66 | 6 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
67 | 66 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴 ∈ 𝑃) |
68 | 10 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
69 | 68 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋 ∈ 𝑃) |
70 | 15 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
71 | 70 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸 ∈ 𝑃) |
72 | 13 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
73 | 72 | ad2antrr 722 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ∈ 𝑃) |
74 | | simplr 765 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥 ∈ 𝑃) |
75 | | simpllr 772 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
76 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
77 | 22 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
78 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
79 | 1, 3, 2, 62, 64, 66, 68, 78 | ncolne1 26890 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ≠ 𝐴) |
80 | 79 | necomd 2998 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ≠ 𝐵) |
81 | 1, 17, 3, 62, 66, 64, 72, 70, 77, 80 | tgcgrneq 26748 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ≠ 𝐸) |
82 | 81 | ad2antrr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ≠ 𝐸) |
83 | 82 | neneqd 2947 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸) |
84 | | ioran 980 |
. . . . . . . . 9
⊢ (¬
(𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸)) |
85 | 76, 83, 84 | sylanbrc 582 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
86 | 1, 2, 3, 63, 73, 71, 74, 85 | ncolcom 26826 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
87 | 1, 2, 3, 63, 71, 73, 74, 86 | ncolrot1 26827 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥)) |
88 | 1, 17, 3, 4, 6, 8, 13, 15, 22 | tgcgrcomlr 26745 |
. . . . . . 7
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
89 | 88 | ad4antr 728 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
90 | 1, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89 | trgcopy 27069 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥)) |
91 | 21 | ad6antr 732 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
92 | 63 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐺 ∈ TarskiG) |
93 | 65 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐵 ∈ 𝑃) |
94 | 67 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 ∈ 𝑃) |
95 | 69 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑋 ∈ 𝑃) |
96 | 71 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐸 ∈ 𝑃) |
97 | 73 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 ∈ 𝑃) |
98 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑦 ∈ 𝑃) |
99 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) |
100 | 1, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99 | cgr3simp2 26786 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
101 | 1, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99 | cgr3simp3 26787 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
102 | 1, 17, 3, 92, 95, 93, 98, 96, 101 | tgcgrcomlr 26745 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
103 | 44 | ad5antr 730 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐶 ∈ 𝑃) |
104 | 46 | ad5antr 730 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐹 ∈ 𝑃) |
105 | 1, 17, 3, 92, 94, 95, 97, 98, 100 | tgcgrcomlr 26745 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
106 | | simp-6r 784 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 = 𝐶) |
107 | 106 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
108 | 50 | ad5antr 730 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 = 𝐹) |
109 | 108 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
110 | 105, 107,
109 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
111 | 1, 17, 3, 92, 95, 103, 98, 104, 110 | tgcgrcomlr 26745 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
112 | 100, 102,
111 | 3jca 1126 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
113 | 1, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98 | tgcgr4 26796 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
114 | 91, 112, 113 | mpbir2and 709 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
115 | 114 | ex 412 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
116 | 115 | adantrd 491 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → ((〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
117 | 116 | reximdva 3202 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
118 | 90, 117 | mpd 15 |
. . . 4
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
119 | 1, 2, 3, 62, 66, 68, 64, 78 | ncoltgdim2 26830 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2) |
120 | 1, 3, 2, 62, 119, 72, 70, 81 | tglowdim2ln 26916 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥 ∈ 𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
121 | 118, 120 | r19.29a 3217 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
122 | 60, 121 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
123 | | cgrg3col4.2 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
124 | 1, 2, 3, 4, 6, 19,
10, 123 | colcom 26823 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
125 | 1, 2, 3, 4, 19, 6,
10, 124 | colrot1 26824 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
126 | 1, 2, 3, 4, 6, 19,
10, 12, 13, 20, 17, 125, 48 | lnext 26832 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
127 | 126 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
128 | 21 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
129 | 4 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐺 ∈ TarskiG) |
130 | 10 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑋 ∈ 𝑃) |
131 | 6 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ∈ 𝑃) |
132 | | simplr 765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑦 ∈ 𝑃) |
133 | 13 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐷 ∈ 𝑃) |
134 | 19 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐶 ∈ 𝑃) |
135 | 20 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐹 ∈ 𝑃) |
136 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
137 | 1, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136 | cgr3simp3 26787 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
138 | 1, 17, 3, 129, 130, 131, 132, 133, 137 | tgcgrcomlr 26745 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
139 | 8 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐵 ∈ 𝑃) |
140 | 15 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐸 ∈ 𝑃) |
141 | 125 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
142 | 22 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
143 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp2 26786 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹)) |
144 | 1, 17, 3, 4, 8, 19,
15, 20, 143 | tgcgrcomlr 26745 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
145 | 144 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
146 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ≠ 𝐶) |
147 | 1, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146 | tgfscgr 26833 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
148 | 1, 17, 3, 129, 130, 139, 132, 140, 147 | tgcgrcomlr 26745 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
149 | 1, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136 | cgr3simp2 26786 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
150 | 138, 148,
149 | 3jca 1126 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
151 | 1, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132 | tgcgr4 26796 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
152 | 128, 150,
151 | mpbir2and 709 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
153 | 152 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
154 | 153 | reximdva 3202 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
155 | 127, 154 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
156 | 122, 155 | pm2.61dane 3031 |
1
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |