MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgrg3col4 Structured version   Visualization version   GIF version

Theorem cgrg3col4 28539
Description: Lemma 11.28 of [Schwabhauser] p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Baseβ€˜πΊ)
isleag.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
isleag.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
isleag.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
isleag.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
isleag.d (πœ‘ β†’ 𝐷 ∈ 𝑃)
isleag.e (πœ‘ β†’ 𝐸 ∈ 𝑃)
isleag.f (πœ‘ β†’ 𝐹 ∈ 𝑃)
cgrg3col4.l 𝐿 = (LineGβ€˜πΊ)
cgrg3col4.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
cgrg3col4.1 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
cgrg3col4.2 (πœ‘ β†’ (𝑋 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
Assertion
Ref Expression
cgrg3col4 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐡   𝑦,𝐢   𝑦,𝐷   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝐿   𝑦,𝑃   𝑦,𝑋   πœ‘,𝑦

Proof of Theorem cgrg3col4
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 isleag.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
2 cgrg3col4.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
3 eqid 2724 . . . . 5 (Itvβ€˜πΊ) = (Itvβ€˜πΊ)
4 isleag.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐺 ∈ TarskiG)
6 isleag.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑃)
76ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐴 ∈ 𝑃)
8 isleag.b . . . . . 6 (πœ‘ β†’ 𝐡 ∈ 𝑃)
98ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐡 ∈ 𝑃)
10 cgrg3col4.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑃)
1110ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝑋 ∈ 𝑃)
12 eqid 2724 . . . . 5 (cgrGβ€˜πΊ) = (cgrGβ€˜πΊ)
13 isleag.d . . . . . 6 (πœ‘ β†’ 𝐷 ∈ 𝑃)
1413ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐷 ∈ 𝑃)
15 isleag.e . . . . . 6 (πœ‘ β†’ 𝐸 ∈ 𝑃)
1615ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐸 ∈ 𝑃)
17 eqid 2724 . . . . 5 (distβ€˜πΊ) = (distβ€˜πΊ)
18 simpr 484 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
19 isleag.c . . . . . . 7 (πœ‘ β†’ 𝐢 ∈ 𝑃)
20 isleag.f . . . . . . 7 (πœ‘ β†’ 𝐹 ∈ 𝑃)
21 cgrg3col4.1 . . . . . . 7 (πœ‘ β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
221, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp1 28206 . . . . . 6 (πœ‘ β†’ (𝐴(distβ€˜πΊ)𝐡) = (𝐷(distβ€˜πΊ)𝐸))
2322ad2antrr 723 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ (𝐴(distβ€˜πΊ)𝐡) = (𝐷(distβ€˜πΊ)𝐸))
241, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23lnext 28253 . . . 4 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©)
2521ad4antr 729 . . . . . . 7 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
265ad2antrr 723 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐺 ∈ TarskiG)
2711ad2antrr 723 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝑋 ∈ 𝑃)
287ad2antrr 723 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐴 ∈ 𝑃)
29 simplr 766 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝑦 ∈ 𝑃)
3014ad2antrr 723 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐷 ∈ 𝑃)
319ad2antrr 723 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐡 ∈ 𝑃)
3216ad2antrr 723 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐸 ∈ 𝑃)
33 simpr 484 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©)
341, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp3 28208 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐴) = (𝑦(distβ€˜πΊ)𝐷))
351, 17, 3, 26, 27, 28, 29, 30, 34tgcgrcomlr 28166 . . . . . . . 8 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦))
361, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33cgr3simp2 28207 . . . . . . . 8 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦))
3719ad4antr 729 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐢 ∈ 𝑃)
3820ad4antr 729 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐹 ∈ 𝑃)
39 simpr 484 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 = 𝐢)
4039ad3antrrr 727 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐴 = 𝐢)
4140oveq2d 7417 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐴) = (𝑋(distβ€˜πΊ)𝐢))
424adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐺 ∈ TarskiG)
436adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐴 ∈ 𝑃)
4419adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐢 ∈ 𝑃)
4513adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐷 ∈ 𝑃)
4620adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐹 ∈ 𝑃)
471, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp3 28208 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝐢(distβ€˜πΊ)𝐴) = (𝐹(distβ€˜πΊ)𝐷))
481, 17, 3, 4, 19, 6, 20, 13, 47tgcgrcomlr 28166 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐴(distβ€˜πΊ)𝐢) = (𝐷(distβ€˜πΊ)𝐹))
4948adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ (𝐴(distβ€˜πΊ)𝐢) = (𝐷(distβ€˜πΊ)𝐹))
501, 17, 3, 42, 43, 44, 45, 46, 49, 39tgcgreq 28168 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ 𝐷 = 𝐹)
5150ad3antrrr 727 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ 𝐷 = 𝐹)
5251oveq2d 7417 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝑦(distβ€˜πΊ)𝐷) = (𝑦(distβ€˜πΊ)𝐹))
5334, 41, 523eqtr3d 2772 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐢) = (𝑦(distβ€˜πΊ)𝐹))
541, 17, 3, 26, 27, 37, 29, 38, 53tgcgrcomlr 28166 . . . . . . . 8 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦))
5535, 36, 543jca 1125 . . . . . . 7 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))
561, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29tgcgr4 28217 . . . . . . 7 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ (βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ© ↔ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ∧ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))))
5725, 55, 56mpbir2and 710 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
5857ex 412 . . . . 5 ((((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) β†’ (βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ© β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
5958reximdva 3160 . . . 4 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ (βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπ‘¦β€βŸ© β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
6024, 59mpd 15 . . 3 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
61 eqid 2724 . . . . . 6 (hlGβ€˜πΊ) = (hlGβ€˜πΊ)
624ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐺 ∈ TarskiG)
6362ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐺 ∈ TarskiG)
648ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐡 ∈ 𝑃)
6564ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐡 ∈ 𝑃)
666ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐴 ∈ 𝑃)
6766ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐴 ∈ 𝑃)
6810ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝑋 ∈ 𝑃)
6968ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝑋 ∈ 𝑃)
7015ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐸 ∈ 𝑃)
7170ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐸 ∈ 𝑃)
7213ad2antrr 723 . . . . . . 7 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐷 ∈ 𝑃)
7372ad2antrr 723 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐷 ∈ 𝑃)
74 simplr 766 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ π‘₯ ∈ 𝑃)
75 simpllr 773 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
76 simpr 484 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ π‘₯ ∈ (𝐷𝐿𝐸))
7722ad2antrr 723 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ (𝐴(distβ€˜πΊ)𝐡) = (𝐷(distβ€˜πΊ)𝐸))
78 simpr 484 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
791, 3, 2, 62, 64, 66, 68, 78ncolne1 28311 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐡 β‰  𝐴)
8079necomd 2988 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐴 β‰  𝐡)
811, 17, 3, 62, 66, 64, 72, 70, 77, 80tgcgrneq 28169 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐷 β‰  𝐸)
8281ad2antrr 723 . . . . . . . . . 10 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ 𝐷 β‰  𝐸)
8382neneqd 2937 . . . . . . . . 9 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ 𝐷 = 𝐸)
84 ioran 980 . . . . . . . . 9 (Β¬ (π‘₯ ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (Β¬ π‘₯ ∈ (𝐷𝐿𝐸) ∧ Β¬ 𝐷 = 𝐸))
8576, 83, 84sylanbrc 582 . . . . . . . 8 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ (π‘₯ ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
861, 2, 3, 63, 73, 71, 74, 85ncolcom 28247 . . . . . . 7 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ (π‘₯ ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
871, 2, 3, 63, 71, 73, 74, 86ncolrot1 28248 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ Β¬ (𝐸 ∈ (𝐷𝐿π‘₯) ∨ 𝐷 = π‘₯))
881, 17, 3, 4, 6, 8, 13, 15, 22tgcgrcomlr 28166 . . . . . . 7 (πœ‘ β†’ (𝐡(distβ€˜πΊ)𝐴) = (𝐸(distβ€˜πΊ)𝐷))
8988ad4antr 729 . . . . . 6 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ (𝐡(distβ€˜πΊ)𝐴) = (𝐸(distβ€˜πΊ)𝐷))
901, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89trgcopy 28490 . . . . 5 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ© ∧ 𝑦((hpGβ€˜πΊ)β€˜(𝐸𝐿𝐷))π‘₯))
9121ad6antr 733 . . . . . . . . 9 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
9263ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐺 ∈ TarskiG)
9365ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐡 ∈ 𝑃)
9467ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐴 ∈ 𝑃)
9569ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝑋 ∈ 𝑃)
9671ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐸 ∈ 𝑃)
9773ad2antrr 723 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐷 ∈ 𝑃)
98 simplr 766 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝑦 ∈ 𝑃)
99 simpr 484 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©)
1001, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp2 28207 . . . . . . . . . 10 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦))
1011, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99cgr3simp3 28208 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐡) = (𝑦(distβ€˜πΊ)𝐸))
1021, 17, 3, 92, 95, 93, 98, 96, 101tgcgrcomlr 28166 . . . . . . . . . 10 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦))
10344ad5antr 731 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐢 ∈ 𝑃)
10446ad5antr 731 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐹 ∈ 𝑃)
1051, 17, 3, 92, 94, 95, 97, 98, 100tgcgrcomlr 28166 . . . . . . . . . . . 12 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐴) = (𝑦(distβ€˜πΊ)𝐷))
106 simp-6r 785 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐴 = 𝐢)
107106oveq2d 7417 . . . . . . . . . . . 12 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐴) = (𝑋(distβ€˜πΊ)𝐢))
10850ad5antr 731 . . . . . . . . . . . . 13 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ 𝐷 = 𝐹)
109108oveq2d 7417 . . . . . . . . . . . 12 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝑦(distβ€˜πΊ)𝐷) = (𝑦(distβ€˜πΊ)𝐹))
110105, 107, 1093eqtr3d 2772 . . . . . . . . . . 11 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐢) = (𝑦(distβ€˜πΊ)𝐹))
1111, 17, 3, 92, 95, 103, 98, 104, 110tgcgrcomlr 28166 . . . . . . . . . 10 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦))
112100, 102, 1113jca 1125 . . . . . . . . 9 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))
1131, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98tgcgr4 28217 . . . . . . . . 9 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ (βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ© ↔ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ∧ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))))
11491, 112, 113mpbir2and 710 . . . . . . . 8 (((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
115114ex 412 . . . . . . 7 ((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) β†’ (βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ© β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
116115adantrd 491 . . . . . 6 ((((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) β†’ ((βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ© ∧ 𝑦((hpGβ€˜πΊ)β€˜(𝐸𝐿𝐷))π‘₯) β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
117116reximdva 3160 . . . . 5 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ (βˆƒπ‘¦ ∈ 𝑃 (βŸ¨β€œπ΅π΄π‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπΈπ·π‘¦β€βŸ© ∧ 𝑦((hpGβ€˜πΊ)β€˜(𝐸𝐿𝐷))π‘₯) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
11890, 117mpd 15 . . . 4 (((((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ π‘₯ ∈ 𝑃) ∧ Β¬ π‘₯ ∈ (𝐷𝐿𝐸)) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
1191, 2, 3, 62, 66, 68, 64, 78ncoltgdim2 28251 . . . . 5 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ 𝐺DimTarskiGβ‰₯2)
1201, 3, 2, 62, 119, 72, 70, 81tglowdim2ln 28337 . . . 4 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ βˆƒπ‘₯ ∈ 𝑃 Β¬ π‘₯ ∈ (𝐷𝐿𝐸))
121118, 120r19.29a 3154 . . 3 (((πœ‘ ∧ 𝐴 = 𝐢) ∧ Β¬ (𝐡 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
12260, 121pm2.61dan 810 . 2 ((πœ‘ ∧ 𝐴 = 𝐢) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
123 cgrg3col4.2 . . . . . . 7 (πœ‘ β†’ (𝑋 ∈ (𝐴𝐿𝐢) ∨ 𝐴 = 𝐢))
1241, 2, 3, 4, 6, 19, 10, 123colcom 28244 . . . . . 6 (πœ‘ β†’ (𝑋 ∈ (𝐢𝐿𝐴) ∨ 𝐢 = 𝐴))
1251, 2, 3, 4, 19, 6, 10, 124colrot1 28245 . . . . 5 (πœ‘ β†’ (𝐢 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1261, 2, 3, 4, 6, 19, 10, 12, 13, 20, 17, 125, 48lnext 28253 . . . 4 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©)
127126adantr 480 . . 3 ((πœ‘ ∧ 𝐴 β‰  𝐢) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©)
12821ad3antrrr 727 . . . . . 6 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ©)
1294ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐺 ∈ TarskiG)
13010ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝑋 ∈ 𝑃)
1316ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐴 ∈ 𝑃)
132 simplr 766 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝑦 ∈ 𝑃)
13313ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐷 ∈ 𝑃)
13419ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐢 ∈ 𝑃)
13520ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐹 ∈ 𝑃)
136 simpr 484 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©)
1371, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp3 28208 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐴) = (𝑦(distβ€˜πΊ)𝐷))
1381, 17, 3, 129, 130, 131, 132, 133, 137tgcgrcomlr 28166 . . . . . . 7 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦))
1398ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐡 ∈ 𝑃)
14015ad3antrrr 727 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐸 ∈ 𝑃)
141125ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐢 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
14222ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐴(distβ€˜πΊ)𝐡) = (𝐷(distβ€˜πΊ)𝐸))
1431, 17, 3, 12, 4, 6, 8, 19, 13, 15, 20, 21cgr3simp2 28207 . . . . . . . . . . 11 (πœ‘ β†’ (𝐡(distβ€˜πΊ)𝐢) = (𝐸(distβ€˜πΊ)𝐹))
1441, 17, 3, 4, 8, 19, 15, 20, 143tgcgrcomlr 28166 . . . . . . . . . 10 (πœ‘ β†’ (𝐢(distβ€˜πΊ)𝐡) = (𝐹(distβ€˜πΊ)𝐸))
145144ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐢(distβ€˜πΊ)𝐡) = (𝐹(distβ€˜πΊ)𝐸))
146 simpllr 773 . . . . . . . . 9 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ 𝐴 β‰  𝐢)
1471, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146tgfscgr 28254 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝑋(distβ€˜πΊ)𝐡) = (𝑦(distβ€˜πΊ)𝐸))
1481, 17, 3, 129, 130, 139, 132, 140, 147tgcgrcomlr 28166 . . . . . . 7 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦))
1491, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136cgr3simp2 28207 . . . . . . 7 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦))
150138, 148, 1493jca 1125 . . . . . 6 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))
1511, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132tgcgr4 28217 . . . . . 6 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ (βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ© ↔ (βŸ¨β€œπ΄π΅πΆβ€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉβ€βŸ© ∧ ((𝐴(distβ€˜πΊ)𝑋) = (𝐷(distβ€˜πΊ)𝑦) ∧ (𝐡(distβ€˜πΊ)𝑋) = (𝐸(distβ€˜πΊ)𝑦) ∧ (𝐢(distβ€˜πΊ)𝑋) = (𝐹(distβ€˜πΊ)𝑦)))))
152128, 150, 151mpbir2and 710 . . . . 5 ((((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) ∧ βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ©) β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
153152ex 412 . . . 4 (((πœ‘ ∧ 𝐴 β‰  𝐢) ∧ 𝑦 ∈ 𝑃) β†’ (βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ© β†’ βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
154153reximdva 3160 . . 3 ((πœ‘ ∧ 𝐴 β‰  𝐢) β†’ (βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΉπ‘¦β€βŸ© β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©))
155127, 154mpd 15 . 2 ((πœ‘ ∧ 𝐴 β‰  𝐢) β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
156122, 155pm2.61dane 3021 1 (πœ‘ β†’ βˆƒπ‘¦ ∈ 𝑃 βŸ¨β€œπ΄π΅πΆπ‘‹β€βŸ©(cgrGβ€˜πΊ)βŸ¨β€œπ·πΈπΉπ‘¦β€βŸ©)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∨ wo 844   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆƒwrex 3062   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  βŸ¨β€œcs3 14789  βŸ¨β€œcs4 14790  Basecbs 17142  distcds 17204  TarskiGcstrkg 28113  Itvcitv 28119  LineGclng 28120  cgrGccgrg 28196  hlGchlg 28286  hpGchpg 28443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-s4 14797  df-trkgc 28134  df-trkgb 28135  df-trkgcb 28136  df-trkgld 28138  df-trkg 28139  df-cgrg 28197  df-ismt 28219  df-leg 28269  df-hlg 28287  df-mir 28339  df-rag 28380  df-perpg 28382  df-hpg 28444  df-mid 28460  df-lmi 28461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator