| Step | Hyp | Ref
| Expression |
| 1 | | isleag.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | cgrg3col4.l |
. . . . 5
⊢ 𝐿 = (LineG‘𝐺) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
| 4 | | isleag.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
| 6 | | isleag.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 7 | 6 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
| 8 | | isleag.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 9 | 8 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
| 10 | | cgrg3col4.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 11 | 10 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
| 12 | | eqid 2736 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
| 13 | | isleag.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 14 | 13 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
| 15 | | isleag.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 16 | 15 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
| 17 | | eqid 2736 |
. . . . 5
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 18 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
| 19 | | isleag.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 20 | | isleag.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 21 | | cgrg3col4.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 22 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp1 28504 |
. . . . . 6
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
| 23 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
| 24 | 1, 2, 3, 5, 7, 9, 11, 12, 14, 16, 17, 18, 23 | lnext 28551 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
| 25 | 21 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 26 | 5 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐺 ∈ TarskiG) |
| 27 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑋 ∈ 𝑃) |
| 28 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 ∈ 𝑃) |
| 29 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝑦 ∈ 𝑃) |
| 30 | 14 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 ∈ 𝑃) |
| 31 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐵 ∈ 𝑃) |
| 32 | 16 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐸 ∈ 𝑃) |
| 33 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) |
| 34 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp3 28506 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
| 35 | 1, 17, 3, 26, 27, 28, 29, 30, 34 | tgcgrcomlr 28464 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
| 36 | 1, 17, 3, 12, 26, 28, 31, 27, 30, 32, 29, 33 | cgr3simp2 28505 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
| 37 | 19 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐶 ∈ 𝑃) |
| 38 | 20 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐹 ∈ 𝑃) |
| 39 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) |
| 40 | 39 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐴 = 𝐶) |
| 41 | 40 | oveq2d 7426 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
| 42 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
| 43 | 6 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
| 44 | 19 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶 ∈ 𝑃) |
| 45 | 13 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 ∈ 𝑃) |
| 46 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐹 ∈ 𝑃) |
| 47 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp3 28506 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐴) = (𝐹(dist‘𝐺)𝐷)) |
| 48 | 1, 17, 3, 4, 19, 6,
20, 13, 47 | tgcgrcomlr 28464 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴(dist‘𝐺)𝐶) = (𝐷(dist‘𝐺)𝐹)) |
| 50 | 1, 17, 3, 42, 43, 44, 45, 46, 49, 39 | tgcgreq 28466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐷 = 𝐹) |
| 51 | 50 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 𝐷 = 𝐹) |
| 52 | 51 | oveq2d 7426 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
| 53 | 34, 41, 52 | 3eqtr3d 2779 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
| 54 | 1, 17, 3, 26, 27, 37, 29, 38, 53 | tgcgrcomlr 28464 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
| 55 | 35, 36, 54 | 3jca 1128 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
| 56 | 1, 17, 3, 12, 26, 28, 31, 37, 27, 30, 32, 38, 29 | tgcgr4 28515 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
| 57 | 25, 55, 56 | mpbir2and 713 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 58 | 57 | ex 412 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 59 | 58 | reximdva 3154 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 60 | 24, 59 | mpd 15 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 61 | | eqid 2736 |
. . . . . 6
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
| 62 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺 ∈ TarskiG) |
| 63 | 62 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG) |
| 64 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ∈ 𝑃) |
| 65 | 64 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐵 ∈ 𝑃) |
| 66 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ∈ 𝑃) |
| 67 | 66 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐴 ∈ 𝑃) |
| 68 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝑋 ∈ 𝑃) |
| 69 | 68 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑋 ∈ 𝑃) |
| 70 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐸 ∈ 𝑃) |
| 71 | 70 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐸 ∈ 𝑃) |
| 72 | 13 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ∈ 𝑃) |
| 73 | 72 | ad2antrr 726 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ∈ 𝑃) |
| 74 | | simplr 768 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝑥 ∈ 𝑃) |
| 75 | | simpllr 775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
| 76 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
| 77 | 22 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
| 78 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
| 79 | 1, 3, 2, 62, 64, 66, 68, 78 | ncolne1 28609 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐵 ≠ 𝐴) |
| 80 | 79 | necomd 2988 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐴 ≠ 𝐵) |
| 81 | 1, 17, 3, 62, 66, 64, 72, 70, 77, 80 | tgcgrneq 28467 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐷 ≠ 𝐸) |
| 82 | 81 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → 𝐷 ≠ 𝐸) |
| 83 | 82 | neneqd 2938 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ 𝐷 = 𝐸) |
| 84 | | ioran 985 |
. . . . . . . . 9
⊢ (¬
(𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝑥 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸)) |
| 85 | 76, 83, 84 | sylanbrc 583 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸)) |
| 86 | 1, 2, 3, 63, 73, 71, 74, 85 | ncolcom 28545 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝑥 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
| 87 | 1, 2, 3, 63, 71, 73, 74, 86 | ncolrot1 28546 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ¬ (𝐸 ∈ (𝐷𝐿𝑥) ∨ 𝐷 = 𝑥)) |
| 88 | 1, 17, 3, 4, 6, 8, 13, 15, 22 | tgcgrcomlr 28464 |
. . . . . . 7
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
| 89 | 88 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (𝐵(dist‘𝐺)𝐴) = (𝐸(dist‘𝐺)𝐷)) |
| 90 | 1, 17, 3, 2, 61, 63, 65, 67, 69, 71, 73, 74, 75, 87, 89 | trgcopy 28788 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥)) |
| 91 | 21 | ad6antr 736 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 92 | 63 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐺 ∈ TarskiG) |
| 93 | 65 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐵 ∈ 𝑃) |
| 94 | 67 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 ∈ 𝑃) |
| 95 | 69 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑋 ∈ 𝑃) |
| 96 | 71 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐸 ∈ 𝑃) |
| 97 | 73 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 ∈ 𝑃) |
| 98 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝑦 ∈ 𝑃) |
| 99 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) |
| 100 | 1, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99 | cgr3simp2 28505 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
| 101 | 1, 17, 3, 12, 92, 93, 94, 95, 96, 97, 98, 99 | cgr3simp3 28506 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
| 102 | 1, 17, 3, 92, 95, 93, 98, 96, 101 | tgcgrcomlr 28464 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
| 103 | 44 | ad5antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐶 ∈ 𝑃) |
| 104 | 46 | ad5antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐹 ∈ 𝑃) |
| 105 | 1, 17, 3, 92, 94, 95, 97, 98, 100 | tgcgrcomlr 28464 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
| 106 | | simp-6r 787 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐴 = 𝐶) |
| 107 | 106 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑋(dist‘𝐺)𝐶)) |
| 108 | 50 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 𝐷 = 𝐹) |
| 109 | 108 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑦(dist‘𝐺)𝐷) = (𝑦(dist‘𝐺)𝐹)) |
| 110 | 105, 107,
109 | 3eqtr3d 2779 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝑋(dist‘𝐺)𝐶) = (𝑦(dist‘𝐺)𝐹)) |
| 111 | 1, 17, 3, 92, 95, 103, 98, 104, 110 | tgcgrcomlr 28464 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
| 112 | 100, 102,
111 | 3jca 1128 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
| 113 | 1, 17, 3, 12, 92, 94, 93, 103, 95, 97, 96, 104, 98 | tgcgr4 28515 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
| 114 | 91, 112, 113 | mpbir2and 713 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 115 | 114 | ex 412 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 116 | 115 | adantrd 491 |
. . . . . 6
⊢
((((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ 𝑃) → ((〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 117 | 116 | reximdva 3154 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → (∃𝑦 ∈ 𝑃 (〈“𝐵𝐴𝑋”〉(cgrG‘𝐺)〈“𝐸𝐷𝑦”〉 ∧ 𝑦((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑥) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 118 | 90, 117 | mpd 15 |
. . . 4
⊢
(((((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) ∧ 𝑥 ∈ 𝑃) ∧ ¬ 𝑥 ∈ (𝐷𝐿𝐸)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 119 | 1, 2, 3, 62, 66, 68, 64, 78 | ncoltgdim2 28549 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → 𝐺DimTarskiG≥2) |
| 120 | 1, 3, 2, 62, 119, 72, 70, 81 | tglowdim2ln 28635 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑥 ∈ 𝑃 ¬ 𝑥 ∈ (𝐷𝐿𝐸)) |
| 121 | 118, 120 | r19.29a 3149 |
. . 3
⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ ¬ (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 122 | 60, 121 | pm2.61dan 812 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 123 | | cgrg3col4.2 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
| 124 | 1, 2, 3, 4, 6, 19,
10, 123 | colcom 28542 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
| 125 | 1, 2, 3, 4, 19, 6,
10, 124 | colrot1 28543 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
| 126 | 1, 2, 3, 4, 6, 19,
10, 12, 13, 20, 17, 125, 48 | lnext 28551 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
| 127 | 126 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
| 128 | 21 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 129 | 4 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐺 ∈ TarskiG) |
| 130 | 10 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑋 ∈ 𝑃) |
| 131 | 6 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ∈ 𝑃) |
| 132 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝑦 ∈ 𝑃) |
| 133 | 13 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐷 ∈ 𝑃) |
| 134 | 19 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐶 ∈ 𝑃) |
| 135 | 20 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐹 ∈ 𝑃) |
| 136 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) |
| 137 | 1, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136 | cgr3simp3 28506 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐴) = (𝑦(dist‘𝐺)𝐷)) |
| 138 | 1, 17, 3, 129, 130, 131, 132, 133, 137 | tgcgrcomlr 28464 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦)) |
| 139 | 8 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐵 ∈ 𝑃) |
| 140 | 15 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐸 ∈ 𝑃) |
| 141 | 125 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋)) |
| 142 | 22 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐴(dist‘𝐺)𝐵) = (𝐷(dist‘𝐺)𝐸)) |
| 143 | 1, 17, 3, 12, 4, 6,
8, 19, 13, 15, 20, 21 | cgr3simp2 28505 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵(dist‘𝐺)𝐶) = (𝐸(dist‘𝐺)𝐹)) |
| 144 | 1, 17, 3, 4, 8, 19,
15, 20, 143 | tgcgrcomlr 28464 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
| 145 | 144 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝐵) = (𝐹(dist‘𝐺)𝐸)) |
| 146 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 𝐴 ≠ 𝐶) |
| 147 | 1, 2, 3, 129, 131, 134, 130, 12, 133, 135, 17, 139, 132, 140, 141, 136, 142, 145, 146 | tgfscgr 28552 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝑋(dist‘𝐺)𝐵) = (𝑦(dist‘𝐺)𝐸)) |
| 148 | 1, 17, 3, 129, 130, 139, 132, 140, 147 | tgcgrcomlr 28464 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦)) |
| 149 | 1, 17, 3, 12, 129, 131, 134, 130, 133, 135, 132, 136 | cgr3simp2 28505 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦)) |
| 150 | 138, 148,
149 | 3jca 1128 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))) |
| 151 | 1, 17, 3, 12, 129, 131, 139, 134, 130, 133, 140, 135, 132 | tgcgr4 28515 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → (〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉 ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹”〉 ∧ ((𝐴(dist‘𝐺)𝑋) = (𝐷(dist‘𝐺)𝑦) ∧ (𝐵(dist‘𝐺)𝑋) = (𝐸(dist‘𝐺)𝑦) ∧ (𝐶(dist‘𝐺)𝑋) = (𝐹(dist‘𝐺)𝑦))))) |
| 152 | 128, 150,
151 | mpbir2and 713 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) ∧ 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉) → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 153 | 152 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ 𝑦 ∈ 𝑃) → (〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 154 | 153 | reximdva 3154 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (∃𝑦 ∈ 𝑃 〈“𝐴𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐹𝑦”〉 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉)) |
| 155 | 127, 154 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |
| 156 | 122, 155 | pm2.61dane 3020 |
1
⊢ (𝜑 → ∃𝑦 ∈ 𝑃 〈“𝐴𝐵𝐶𝑋”〉(cgrG‘𝐺)〈“𝐷𝐸𝐹𝑦”〉) |