Step | Hyp | Ref
| Expression |
1 | | krippen.1 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐸)) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐸)) |
3 | | mirval.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝐺) |
4 | | mirval.d |
. . . . . . 7
⊢ − =
(dist‘𝐺) |
5 | | mirval.i |
. . . . . . 7
⊢ 𝐼 = (Itv‘𝐺) |
6 | | mirval.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐺 ∈ TarskiG) |
8 | | krippen.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 ∈ 𝑃) |
10 | | krippen.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
11 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐴 ∈ 𝑃) |
12 | | krippen.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐵 ∈ 𝑃) |
14 | | krippen.3 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
16 | | krippen.l |
. . . . . . . 8
⊢ ≤ =
(≤G‘𝐺) |
17 | | krippen.7 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 − 𝐴) ≤ (𝐶 − 𝐸)) |
18 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐴) ≤ (𝐶 − 𝐸)) |
19 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐸 = 𝐶) |
20 | 19 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐸) = (𝐶 − 𝐶)) |
21 | 18, 20 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐴) ≤ (𝐶 − 𝐶)) |
22 | 3, 4, 5, 16, 7, 9,
11, 9, 13, 21 | legeq 26954 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 = 𝐴) |
23 | 3, 4, 5, 7, 9, 11,
9, 13, 15, 22 | tgcgreq 26843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 = 𝐵) |
24 | | krippen.5 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐵 = (𝑀‘𝐴)) |
26 | 23, 22, 25 | 3eqtr3rd 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝑀‘𝐴) = 𝐴) |
27 | | mirval.l |
. . . . . 6
⊢ 𝐿 = (LineG‘𝐺) |
28 | | mirval.s |
. . . . . 6
⊢ 𝑆 = (pInvG‘𝐺) |
29 | | krippen.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
30 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝑋 ∈ 𝑃) |
31 | | krippen.m |
. . . . . 6
⊢ 𝑀 = (𝑆‘𝑋) |
32 | 3, 4, 5, 27, 28, 7, 30, 31, 11 | mirinv 27027 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → ((𝑀‘𝐴) = 𝐴 ↔ 𝑋 = 𝐴)) |
33 | 26, 32 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝑋 = 𝐴) |
34 | | krippen.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐹 ∈ 𝑃) |
36 | | krippen.4 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
37 | 36 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
38 | 37, 20 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝐶 − 𝐹) = (𝐶 − 𝐶)) |
39 | 3, 4, 5, 7, 9, 35,
9, 38 | axtgcgrid 26824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 = 𝐹) |
40 | | krippen.6 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑁‘𝐸)) |
41 | 40 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐹 = (𝑁‘𝐸)) |
42 | 19, 39, 41 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝑁‘𝐸) = 𝐸) |
43 | | krippen.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
44 | 43 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝑌 ∈ 𝑃) |
45 | | krippen.n |
. . . . . 6
⊢ 𝑁 = (𝑆‘𝑌) |
46 | | krippen.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
47 | 46 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐸 ∈ 𝑃) |
48 | 3, 4, 5, 27, 28, 7, 44, 45, 47 | mirinv 27027 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → ((𝑁‘𝐸) = 𝐸 ↔ 𝑌 = 𝐸)) |
49 | 42, 48 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝑌 = 𝐸) |
50 | 33, 49 | oveq12d 7293 |
. . 3
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → (𝑋𝐼𝑌) = (𝐴𝐼𝐸)) |
51 | 2, 50 | eleqtrrd 2842 |
. 2
⊢ ((𝜑 ∧ 𝐸 = 𝐶) → 𝐶 ∈ (𝑋𝐼𝑌)) |
52 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
53 | 52 | ad2antrr 723 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐺 ∈ TarskiG) |
54 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
55 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑆‘𝐶) = (𝑆‘𝐶) |
56 | 3, 4, 5, 27, 28, 52, 54, 55 | mirf 27021 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝑆‘𝐶):𝑃⟶𝑃) |
57 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝑌 ∈ 𝑃) |
58 | 56, 57 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘𝐶)‘𝑌) ∈ 𝑃) |
59 | 58 | ad2antrr 723 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆‘𝐶)‘𝑌) ∈ 𝑃) |
60 | | simplr 766 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ 𝑃) |
61 | 54 | ad2antrr 723 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ 𝑃) |
62 | 57 | ad2antrr 723 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑌 ∈ 𝑃) |
63 | | simprl 768 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶)) |
64 | 3, 4, 5, 27, 28, 6, 8, 55, 43 | mirbtwn 27019 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝑌)) |
65 | 64 | ad3antrrr 727 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝑌)) |
66 | 3, 4, 5, 53, 59, 60, 61, 62, 63, 65 | tgbtwnexch3 26855 |
. . . 4
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (𝑞𝐼𝑌)) |
67 | 29 | ad3antrrr 727 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑋 ∈ 𝑃) |
68 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
69 | 68 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐴 ∈ 𝑃) |
70 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
71 | 70 | ad2antrr 723 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵 ∈ 𝑃) |
72 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑆‘𝑞) = (𝑆‘𝑞) |
73 | 46 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐸 ∈ 𝑃) |
74 | 56, 73 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐸) ∈ 𝑃) |
75 | 34 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐹 ∈ 𝑃) |
76 | 56, 75 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐹) ∈ 𝑃) |
77 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG) |
78 | 10 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → 𝐴 ∈ 𝑃) |
79 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → ((𝑆‘𝐶)‘𝐸) ∈ 𝑃) |
80 | 3, 4, 5, 77, 78, 79 | tgbtwntriv1 26852 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐴𝐼((𝑆‘𝐶)‘𝐸))) |
81 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) |
82 | 81 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → (𝐴𝐼((𝑆‘𝐶)‘𝐸)) = (𝐶𝐼((𝑆‘𝐶)‘𝐸))) |
83 | 80, 82 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐸))) |
84 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
85 | 10 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
86 | 74 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐸) ∈ 𝑃) |
87 | 8 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
88 | 46 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐸 ∈ 𝑃) |
89 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐸 ≠ 𝐶) |
90 | 3, 4, 5, 6, 10, 8,
46, 1 | tgbtwncom 26849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 ∈ (𝐸𝐼𝐴)) |
91 | 90 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ (𝐸𝐼𝐴)) |
92 | 3, 4, 5, 27, 28, 84, 87, 55, 88 | mirbtwn 27019 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐸)𝐼𝐸)) |
93 | 3, 4, 5, 84, 86, 87, 88, 92 | tgbtwncom 26849 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ (𝐸𝐼((𝑆‘𝐶)‘𝐸))) |
94 | 3, 5, 84, 88, 87, 85, 86, 89, 91, 93 | tgbtwnconn2 26937 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐸)) ∨ ((𝑆‘𝐶)‘𝐸) ∈ (𝐶𝐼𝐴))) |
95 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐴) ≤ (𝐶 − 𝐸)) |
96 | 3, 4, 5, 27, 28, 52, 54, 55, 73 | mircgr 27018 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐸)) = (𝐶 − 𝐸)) |
97 | 95, 96 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐴) ≤ (𝐶 − ((𝑆‘𝐶)‘𝐸))) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → (𝐶 − 𝐴) ≤ (𝐶 − ((𝑆‘𝐶)‘𝐸))) |
99 | 3, 4, 5, 16, 84, 85, 86, 87, 85, 94, 98 | legbtwn 26955 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐸))) |
100 | 83, 99 | pm2.61dane 3032 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐸))) |
101 | 3, 4, 5, 52, 54, 68, 74, 100 | tgbtwncom 26849 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐴 ∈ (((𝑆‘𝐶)‘𝐸)𝐼𝐶)) |
102 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → 𝐺 ∈ TarskiG) |
103 | 12 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → 𝐵 ∈ 𝑃) |
104 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → ((𝑆‘𝐶)‘𝐹) ∈ 𝑃) |
105 | 3, 4, 5, 102, 103, 104 | tgbtwntriv1 26852 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐵𝐼((𝑆‘𝐶)‘𝐹))) |
106 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) |
107 | 106 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → (𝐵𝐼((𝑆‘𝐶)‘𝐹)) = (𝐶𝐼((𝑆‘𝐶)‘𝐹))) |
108 | 105, 107 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐹))) |
109 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
110 | 12 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
111 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → ((𝑆‘𝐶)‘𝐹) ∈ 𝑃) |
112 | 8 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
113 | 34 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐹 ∈ 𝑃) |
114 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐺 ∈ TarskiG) |
115 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐶 ∈ 𝑃) |
116 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐸 ∈ 𝑃) |
117 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
118 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐹 = 𝐶) |
119 | 118 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → (𝐶 − 𝐹) = (𝐶 − 𝐶)) |
120 | 117, 119 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → (𝐶 − 𝐸) = (𝐶 − 𝐶)) |
121 | 3, 4, 5, 114, 115, 116, 115, 120 | axtgcgrid 26824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐶 = 𝐸) |
122 | 121 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝐹 = 𝐶) → 𝐸 = 𝐶) |
123 | 122 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐹 = 𝐶) → 𝐸 = 𝐶) |
124 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐹 = 𝐶) → 𝐸 ≠ 𝐶) |
125 | 124 | neneqd 2948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐹 = 𝐶) → ¬ 𝐸 = 𝐶) |
126 | 123, 125 | pm2.65da 814 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ¬ 𝐹 = 𝐶) |
127 | 126 | neqned 2950 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐹 ≠ 𝐶) |
128 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐹 ≠ 𝐶) |
129 | | krippen.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐹)) |
130 | 3, 4, 5, 6, 12, 8,
34, 129 | tgbtwncom 26849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐶 ∈ (𝐹𝐼𝐵)) |
131 | 130 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐹𝐼𝐵)) |
132 | 3, 4, 5, 27, 28, 109, 112, 55, 113 | mirbtwn 27019 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (((𝑆‘𝐶)‘𝐹)𝐼𝐹)) |
133 | 3, 4, 5, 109, 111, 112, 113, 132 | tgbtwncom 26849 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐹𝐼((𝑆‘𝐶)‘𝐹))) |
134 | 3, 5, 109, 113, 112, 110, 111, 128, 131, 133 | tgbtwnconn2 26937 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → (𝐵 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐹)) ∨ ((𝑆‘𝐶)‘𝐹) ∈ (𝐶𝐼𝐵))) |
135 | 17, 14, 36 | 3brtr3d 5105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐶 − 𝐵) ≤ (𝐶 − 𝐹)) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐵) ≤ (𝐶 − 𝐹)) |
137 | 3, 4, 5, 27, 28, 52, 54, 55, 75 | mircgr 27018 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐹)) = (𝐶 − 𝐹)) |
138 | 136, 137 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐵) ≤ (𝐶 − ((𝑆‘𝐶)‘𝐹))) |
139 | 138 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → (𝐶 − 𝐵) ≤ (𝐶 − ((𝑆‘𝐶)‘𝐹))) |
140 | 3, 4, 5, 16, 109, 110, 111, 112, 110, 134, 139 | legbtwn 26955 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐹))) |
141 | 108, 140 | pm2.61dane 3032 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆‘𝐶)‘𝐹))) |
142 | 3, 4, 5, 52, 54, 70, 76, 141 | tgbtwncom 26849 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐵 ∈ (((𝑆‘𝐶)‘𝐹)𝐼𝐶)) |
143 | 36 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐸) = (𝐶 − 𝐹)) |
144 | 143, 96, 137 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝐸)) = (𝐶 − ((𝑆‘𝐶)‘𝐹))) |
145 | 3, 4, 5, 52, 54, 74, 54, 76, 144 | tgcgrcomlr 26841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐸) − 𝐶) = (((𝑆‘𝐶)‘𝐹) − 𝐶)) |
146 | 14 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
147 | 3, 4, 5, 52, 54, 68, 54, 70, 146 | tgcgrcomlr 26841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐴 − 𝐶) = (𝐵 − 𝐶)) |
148 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆‘((𝑆‘𝐶)‘𝑌)) = (𝑆‘((𝑆‘𝐶)‘𝑌)) |
149 | 3, 4, 5, 27, 28, 52, 58, 148, 74 | mircgr 27018 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝑌) − ((𝑆‘((𝑆‘𝐶)‘𝑌))‘((𝑆‘𝐶)‘𝐸))) = (((𝑆‘𝐶)‘𝑌) − ((𝑆‘𝐶)‘𝐸))) |
150 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆‘𝐶)‘𝑌) = ((𝑆‘𝐶)‘𝑌) |
151 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆‘𝐶)‘𝐸) = ((𝑆‘𝐶)‘𝐸) |
152 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆‘𝐶)‘𝐹) = ((𝑆‘𝐶)‘𝐹) |
153 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐹 = (𝑁‘𝐸)) |
154 | 45 | fveq1i 6775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁‘𝐸) = ((𝑆‘𝑌)‘𝐸) |
155 | 153, 154 | eqtr2di 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘𝑌)‘𝐸) = 𝐹) |
156 | 3, 4, 5, 27, 28, 52, 55, 150, 151, 152, 54, 57, 73, 75, 155 | mirauto 27045 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘((𝑆‘𝐶)‘𝑌))‘((𝑆‘𝐶)‘𝐸)) = ((𝑆‘𝐶)‘𝐹)) |
157 | 156 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝑌) − ((𝑆‘((𝑆‘𝐶)‘𝑌))‘((𝑆‘𝐶)‘𝐸))) = (((𝑆‘𝐶)‘𝑌) − ((𝑆‘𝐶)‘𝐹))) |
158 | 149, 157 | eqtr3d 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝑌) − ((𝑆‘𝐶)‘𝐸)) = (((𝑆‘𝐶)‘𝑌) − ((𝑆‘𝐶)‘𝐹))) |
159 | 3, 4, 5, 52, 58, 74, 58, 76, 158 | tgcgrcomlr 26841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝐸) − ((𝑆‘𝐶)‘𝑌)) = (((𝑆‘𝐶)‘𝐹) − ((𝑆‘𝐶)‘𝑌))) |
160 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐶 − ((𝑆‘𝐶)‘𝑌)) = (𝐶 − ((𝑆‘𝐶)‘𝑌))) |
161 | 3, 4, 5, 52, 74, 68, 54, 58, 76, 70, 54, 58, 101, 142, 145, 147, 159, 160 | tgifscgr 26869 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐴 − ((𝑆‘𝐶)‘𝑌)) = (𝐵 − ((𝑆‘𝐶)‘𝑌))) |
162 | 3, 4, 5, 52, 68, 58, 70, 58, 161 | tgcgrcomlr 26841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (((𝑆‘𝐶)‘𝑌) − 𝐴) = (((𝑆‘𝐶)‘𝑌) − 𝐵)) |
163 | 162 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → (((𝑆‘𝐶)‘𝑌) − 𝐴) = (((𝑆‘𝐶)‘𝑌) − 𝐵)) |
164 | 53 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → 𝐺 ∈ TarskiG) |
165 | 59 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → ((𝑆‘𝐶)‘𝑌) ∈ 𝑃) |
166 | 60 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → 𝑞 ∈ 𝑃) |
167 | 63 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → 𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶)) |
168 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → ((𝑆‘𝐶)‘𝑌) = 𝐶) |
169 | 168 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → (((𝑆‘𝐶)‘𝑌)𝐼((𝑆‘𝐶)‘𝑌)) = (((𝑆‘𝐶)‘𝑌)𝐼𝐶)) |
170 | 167, 169 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → 𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼((𝑆‘𝐶)‘𝑌))) |
171 | 3, 4, 5, 164, 165, 166, 170 | axtgbtwnid 26827 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → ((𝑆‘𝐶)‘𝑌) = 𝑞) |
172 | 171 | oveq1d 7290 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → (((𝑆‘𝐶)‘𝑌) − 𝐴) = (𝑞 − 𝐴)) |
173 | 171 | oveq1d 7290 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → (((𝑆‘𝐶)‘𝑌) − 𝐵) = (𝑞 − 𝐵)) |
174 | 163, 172,
173 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) = 𝐶) → (𝑞 − 𝐴) = (𝑞 − 𝐵)) |
175 | 52 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝐺 ∈ TarskiG) |
176 | 58 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → ((𝑆‘𝐶)‘𝑌) ∈ 𝑃) |
177 | 54 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝐶 ∈ 𝑃) |
178 | 60 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝑞 ∈ 𝑃) |
179 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
180 | 68 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝐴 ∈ 𝑃) |
181 | 70 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝐵 ∈ 𝑃) |
182 | | simpr 485 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) |
183 | 59 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → ((𝑆‘𝐶)‘𝑌) ∈ 𝑃) |
184 | 63 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → 𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶)) |
185 | 3, 27, 5, 175, 183, 178, 177, 184 | btwncolg3 26918 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → (𝐶 ∈ (((𝑆‘𝐶)‘𝑌)𝐿𝑞) ∨ ((𝑆‘𝐶)‘𝑌) = 𝑞)) |
186 | 162 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → (((𝑆‘𝐶)‘𝑌) − 𝐴) = (((𝑆‘𝐶)‘𝑌) − 𝐵)) |
187 | 146 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
188 | 3, 27, 5, 175, 176, 177, 178, 179, 180, 181, 4, 182, 185, 186, 187 | lncgr 26930 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆‘𝐶)‘𝑌) ≠ 𝐶) → (𝑞 − 𝐴) = (𝑞 − 𝐵)) |
189 | 174, 188 | pm2.61dane 3032 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞 − 𝐴) = (𝑞 − 𝐵)) |
190 | 189 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞 − 𝐵) = (𝑞 − 𝐴)) |
191 | | simprr 770 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (𝐴𝐼𝐵)) |
192 | 3, 4, 5, 53, 69, 60, 71, 191 | tgbtwncom 26849 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (𝐵𝐼𝐴)) |
193 | 3, 4, 5, 27, 28, 53, 60, 72, 69, 71, 190, 192 | ismir 27020 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵 = ((𝑆‘𝑞)‘𝐴)) |
194 | 193 | eqcomd 2744 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆‘𝑞)‘𝐴) = 𝐵) |
195 | 24 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵 = (𝑀‘𝐴)) |
196 | 31 | fveq1i 6775 |
. . . . . . 7
⊢ (𝑀‘𝐴) = ((𝑆‘𝑋)‘𝐴) |
197 | 195, 196 | eqtr2di 2795 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆‘𝑋)‘𝐴) = 𝐵) |
198 | 3, 4, 5, 27, 28, 53, 60, 67, 69, 71, 194, 197 | miduniq 27046 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 = 𝑋) |
199 | 198 | oveq1d 7290 |
. . . 4
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞𝐼𝑌) = (𝑋𝐼𝑌)) |
200 | 66, 199 | eleqtrd 2841 |
. . 3
⊢ ((((𝜑 ∧ 𝐸 ≠ 𝐶) ∧ 𝑞 ∈ 𝑃) ∧ (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (𝑋𝐼𝑌)) |
201 | 3, 4, 5, 27, 28, 52, 57, 45, 73 | mirbtwn 27019 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝑌 ∈ ((𝑁‘𝐸)𝐼𝐸)) |
202 | 153 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → (𝐹𝐼𝐸) = ((𝑁‘𝐸)𝐼𝐸)) |
203 | 201, 202 | eleqtrrd 2842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝑌 ∈ (𝐹𝐼𝐸)) |
204 | 3, 4, 5, 52, 75, 57, 73, 203 | tgbtwncom 26849 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝑌 ∈ (𝐸𝐼𝐹)) |
205 | 3, 4, 5, 27, 28, 52, 54, 55, 73, 57, 75, 204 | mirbtwni 27032 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ((𝑆‘𝐶)‘𝑌) ∈ (((𝑆‘𝐶)‘𝐸)𝐼((𝑆‘𝐶)‘𝐹))) |
206 | 3, 4, 5, 52, 74, 68, 54, 76, 70, 58, 101, 142, 205 | tgtrisegint 26860 |
. . 3
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → ∃𝑞 ∈ 𝑃 (𝑞 ∈ (((𝑆‘𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) |
207 | 200, 206 | r19.29a 3218 |
. 2
⊢ ((𝜑 ∧ 𝐸 ≠ 𝐶) → 𝐶 ∈ (𝑋𝐼𝑌)) |
208 | 51, 207 | pm2.61dane 3032 |
1
⊢ (𝜑 → 𝐶 ∈ (𝑋𝐼𝑌)) |