Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thinchom Structured version   Visualization version   GIF version

Theorem thinchom 49101
Description: A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
thinchom.x (𝜑𝑋𝐵)
thinchom.y (𝜑𝑌𝐵)
thinchom.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
thinchom.b 𝐵 = (Base‘𝐶)
thinchom.h 𝐻 = (Hom ‘𝐶)
thinchom.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thinchom (𝜑 → (𝑋𝐻𝑌) = {𝐹})

Proof of Theorem thinchom
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 thinchom.x . . . 4 (𝜑𝑋𝐵)
21adantr 480 . . 3 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
3 thinchom.y . . . 4 (𝜑𝑌𝐵)
43adantr 480 . . 3 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
5 simpr 484 . . 3 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝑔 ∈ (𝑋𝐻𝑌))
6 thinchom.f . . . 4 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
76adantr 480 . . 3 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋𝐻𝑌))
8 thinchom.b . . 3 𝐵 = (Base‘𝐶)
9 thinchom.h . . 3 𝐻 = (Hom ‘𝐶)
10 thinchom.c . . . 4 (𝜑𝐶 ∈ ThinCat)
1110adantr 480 . . 3 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat)
122, 4, 5, 7, 8, 9, 11thincmo2 49100 . 2 ((𝜑𝑔 ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐹)
1312, 6eqsnd 4829 1 (𝜑 → (𝑋𝐻𝑌) = {𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4625  cfv 6560  (class class class)co 7432  Basecbs 17248  Hom chom 17309  ThinCatcthinc 49091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435  df-thinc 49092
This theorem is referenced by:  termchom  49159
  Copyright terms: Public domain W3C validator