| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thinchom | Structured version Visualization version GIF version | ||
| Description: A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| thinchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thinchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thinchom.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| thinchom.b | ⊢ 𝐵 = (Base‘𝐶) |
| thinchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thinchom.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thinchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
| 3 | thinchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
| 5 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑔 ∈ (𝑋𝐻𝑌)) | |
| 6 | thinchom.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
| 8 | thinchom.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | thinchom.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | thinchom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat) |
| 12 | 2, 4, 5, 7, 8, 9, 11 | thincmo2 49175 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐹) |
| 13 | 12, 6 | eqsnd 4804 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4599 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 Hom chom 17269 ThinCatcthinc 49166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-nul 5274 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-ov 7403 df-thinc 49167 |
| This theorem is referenced by: termchom 49234 |
| Copyright terms: Public domain | W3C validator |