![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo2 | Structured version Visualization version GIF version |
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
Ref | Expression |
---|---|
isthincd2lem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isthincd2lem1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isthincd2lem1.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
isthincd2lem1.4 | ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) |
thincmo2.b | ⊢ 𝐵 = (Base‘𝐶) |
thincmo2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincmo2.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
thincmo2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd2lem1.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | isthincd2lem1.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | isthincd2lem1.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | isthincd2lem1.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) | |
5 | thincmo2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
6 | thincmo2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
7 | thincmo2.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | 6, 7 | isthinc 47729 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
9 | 8 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
10 | 5, 9 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
11 | 1, 2, 3, 4, 10 | isthincd2lem1 47735 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃*wmo 2531 ∀wral 3060 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 Hom chom 17213 Catccat 17613 ThinCatcthinc 47727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-thinc 47728 |
This theorem is referenced by: thincmo 47737 thincid 47741 thincmon 47742 thincepi 47743 functhinclem4 47752 |
Copyright terms: Public domain | W3C validator |