| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo2 | Structured version Visualization version GIF version | ||
| Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| isthincd2lem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isthincd2lem1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isthincd2lem1.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| isthincd2lem1.4 | ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) |
| thincmo2.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincmo2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincmo2.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thincmo2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem1.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | isthincd2lem1.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | isthincd2lem1.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | isthincd2lem1.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) | |
| 5 | thincmo2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 6 | thincmo2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | thincmo2.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | 6, 7 | isthinc 49046 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
| 9 | 8 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 10 | 5, 9 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 11 | 1, 2, 3, 4, 10 | isthincd2lem1 49052 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 ∀wral 3050 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Hom chom 17284 Catccat 17678 ThinCatcthinc 49044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-thinc 49045 |
| This theorem is referenced by: thinchom 49054 thincmo 49055 thincid 49059 thincmon 49060 thincepi 49061 oppcthinco 49066 oppcthinendcALT 49068 functhinclem4 49074 termchommo 49109 |
| Copyright terms: Public domain | W3C validator |