Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmo2 Structured version   Visualization version   GIF version

Theorem thincmo2 49537
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd2lem1.1 (𝜑𝑋𝐵)
isthincd2lem1.2 (𝜑𝑌𝐵)
isthincd2lem1.3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isthincd2lem1.4 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
thincmo2.b 𝐵 = (Base‘𝐶)
thincmo2.h 𝐻 = (Hom ‘𝐶)
thincmo2.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thincmo2 (𝜑𝐹 = 𝐺)

Proof of Theorem thincmo2
Dummy variables 𝑦 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd2lem1.1 . 2 (𝜑𝑋𝐵)
2 isthincd2lem1.2 . 2 (𝜑𝑌𝐵)
3 isthincd2lem1.3 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 isthincd2lem1.4 . 2 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
5 thincmo2.c . . 3 (𝜑𝐶 ∈ ThinCat)
6 thincmo2.b . . . . 5 𝐵 = (Base‘𝐶)
7 thincmo2.h . . . . 5 𝐻 = (Hom ‘𝐶)
86, 7isthinc 49530 . . . 4 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
98simprbi 496 . . 3 (𝐶 ∈ ThinCat → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
105, 9syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
111, 2, 3, 4, 10isthincd2lem1 49536 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ∃*wmo 2533  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  Catccat 17570  ThinCatcthinc 49528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-thinc 49529
This theorem is referenced by:  thinchom  49538  thincmo  49539  thincid  49543  thincmon  49544  thincepi  49545  oppcthinco  49550  oppcthinendcALT  49552  functhinclem4  49558  termchommo  49596  funcsn  49652
  Copyright terms: Public domain W3C validator