| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo2 | Structured version Visualization version GIF version | ||
| Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| isthincd2lem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isthincd2lem1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isthincd2lem1.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| isthincd2lem1.4 | ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) |
| thincmo2.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincmo2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| thincmo2.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| Ref | Expression |
|---|---|
| thincmo2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem1.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | isthincd2lem1.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | isthincd2lem1.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 4 | isthincd2lem1.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) | |
| 5 | thincmo2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 6 | thincmo2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | thincmo2.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 8 | 6, 7 | isthinc 49381 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
| 9 | 8 | simprbi 496 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 10 | 5, 9 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
| 11 | 1, 2, 3, 4, 10 | isthincd2lem1 49387 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 Catccat 17601 ThinCatcthinc 49379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-thinc 49380 |
| This theorem is referenced by: thinchom 49389 thincmo 49390 thincid 49394 thincmon 49395 thincepi 49396 oppcthinco 49401 oppcthinendcALT 49403 functhinclem4 49409 termchommo 49447 funcsn 49503 |
| Copyright terms: Public domain | W3C validator |