Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmo2 Structured version   Visualization version   GIF version

Theorem thincmo2 49395
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd2lem1.1 (𝜑𝑋𝐵)
isthincd2lem1.2 (𝜑𝑌𝐵)
isthincd2lem1.3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isthincd2lem1.4 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
thincmo2.b 𝐵 = (Base‘𝐶)
thincmo2.h 𝐻 = (Hom ‘𝐶)
thincmo2.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thincmo2 (𝜑𝐹 = 𝐺)

Proof of Theorem thincmo2
Dummy variables 𝑦 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd2lem1.1 . 2 (𝜑𝑋𝐵)
2 isthincd2lem1.2 . 2 (𝜑𝑌𝐵)
3 isthincd2lem1.3 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 isthincd2lem1.4 . 2 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
5 thincmo2.c . . 3 (𝜑𝐶 ∈ ThinCat)
6 thincmo2.b . . . . 5 𝐵 = (Base‘𝐶)
7 thincmo2.h . . . . 5 𝐻 = (Hom ‘𝐶)
86, 7isthinc 49388 . . . 4 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
98simprbi 496 . . 3 (𝐶 ∈ ThinCat → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
105, 9syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
111, 2, 3, 4, 10isthincd2lem1 49394 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃*wmo 2532  wral 3045  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  Catccat 17631  ThinCatcthinc 49386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-thinc 49387
This theorem is referenced by:  thinchom  49396  thincmo  49397  thincid  49401  thincmon  49402  thincepi  49403  oppcthinco  49408  oppcthinendcALT  49410  functhinclem4  49416  termchommo  49454  funcsn  49510
  Copyright terms: Public domain W3C validator