Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincmo2 Structured version   Visualization version   GIF version

Theorem thincmo2 49053
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd2lem1.1 (𝜑𝑋𝐵)
isthincd2lem1.2 (𝜑𝑌𝐵)
isthincd2lem1.3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
isthincd2lem1.4 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
thincmo2.b 𝐵 = (Base‘𝐶)
thincmo2.h 𝐻 = (Hom ‘𝐶)
thincmo2.c (𝜑𝐶 ∈ ThinCat)
Assertion
Ref Expression
thincmo2 (𝜑𝐹 = 𝐺)

Proof of Theorem thincmo2
Dummy variables 𝑦 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd2lem1.1 . 2 (𝜑𝑋𝐵)
2 isthincd2lem1.2 . 2 (𝜑𝑌𝐵)
3 isthincd2lem1.3 . 2 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
4 isthincd2lem1.4 . 2 (𝜑𝐺 ∈ (𝑋𝐻𝑌))
5 thincmo2.c . . 3 (𝜑𝐶 ∈ ThinCat)
6 thincmo2.b . . . . 5 𝐵 = (Base‘𝐶)
7 thincmo2.h . . . . 5 𝐻 = (Hom ‘𝐶)
86, 7isthinc 49046 . . . 4 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
98simprbi 496 . . 3 (𝐶 ∈ ThinCat → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
105, 9syl 17 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
111, 2, 3, 4, 10isthincd2lem1 49052 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  ∃*wmo 2536  wral 3050  cfv 6541  (class class class)co 7413  Basecbs 17229  Hom chom 17284  Catccat 17678  ThinCatcthinc 49044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-thinc 49045
This theorem is referenced by:  thinchom  49054  thincmo  49055  thincid  49059  thincmon  49060  thincepi  49061  oppcthinco  49066  oppcthinendcALT  49068  functhinclem4  49074  termchommo  49109
  Copyright terms: Public domain W3C validator