Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincmo2 | Structured version Visualization version GIF version |
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
Ref | Expression |
---|---|
isthincd2lem1.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
isthincd2lem1.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isthincd2lem1.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
isthincd2lem1.4 | ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) |
thincmo2.b | ⊢ 𝐵 = (Base‘𝐶) |
thincmo2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
thincmo2.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
Ref | Expression |
---|---|
thincmo2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isthincd2lem1.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | isthincd2lem1.2 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | isthincd2lem1.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | isthincd2lem1.4 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) | |
5 | thincmo2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
6 | thincmo2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
7 | thincmo2.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
8 | 6, 7 | isthinc 46302 | . . . 4 ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
9 | 8 | simprbi 497 | . . 3 ⊢ (𝐶 ∈ ThinCat → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
10 | 5, 9 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) |
11 | 1, 2, 3, 4, 10 | isthincd2lem1 46308 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃*wmo 2538 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 ThinCatcthinc 46300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-thinc 46301 |
This theorem is referenced by: thincmo 46310 thincid 46314 thincmon 46315 thincepi 46316 functhinclem4 46325 |
Copyright terms: Public domain | W3C validator |