Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchom Structured version   Visualization version   GIF version

Theorem termchom 49499
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
termchom.c (𝜑𝐶 ∈ TermCat)
termchom.b 𝐵 = (Base‘𝐶)
termchom.x (𝜑𝑋𝐵)
termchom.y (𝜑𝑌𝐵)
termchom.h 𝐻 = (Hom ‘𝐶)
termchom.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termchom (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})

Proof of Theorem termchom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 termchom.c . . . 4 (𝜑𝐶 ∈ TermCat)
2 termchom.b . . . 4 𝐵 = (Base‘𝐶)
3 termchom.x . . . 4 (𝜑𝑋𝐵)
4 termchom.y . . . 4 (𝜑𝑌𝐵)
5 termchom.h . . . 4 𝐻 = (Hom ‘𝐶)
61, 2, 3, 4, 5termchomn0 49495 . . 3 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
7 neq0 4300 . . 3 (¬ (𝑋𝐻𝑌) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
86, 7sylib 218 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
93adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
104adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
11 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
121adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ TermCat)
1312termcthind 49489 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat)
149, 10, 11, 2, 5, 13thinchom 49438 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {𝑓})
15 termchom.i . . . . 5 1 = (Id‘𝐶)
1612, 2, 9, 10, 5, 11, 15termcid 49497 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 = ( 1𝑋))
1716sneqd 4586 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → {𝑓} = {( 1𝑋)})
1814, 17eqtrd 2765 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {( 1𝑋)})
198, 18exlimddv 1936 1 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2110  c0 4281  {csn 4574  cfv 6477  (class class class)co 7341  Basecbs 17112  Hom chom 17164  Idccid 17563  TermCatctermc 49483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-cat 17566  df-cid 17567  df-thinc 49429  df-termc 49484
This theorem is referenced by:  termchom2  49500  termcfuncval  49543
  Copyright terms: Public domain W3C validator