Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termchom Structured version   Visualization version   GIF version

Theorem termchom 49234
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
termchom.c (𝜑𝐶 ∈ TermCat)
termchom.b 𝐵 = (Base‘𝐶)
termchom.x (𝜑𝑋𝐵)
termchom.y (𝜑𝑌𝐵)
termchom.h 𝐻 = (Hom ‘𝐶)
termchom.i 1 = (Id‘𝐶)
Assertion
Ref Expression
termchom (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})

Proof of Theorem termchom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 termchom.c . . . 4 (𝜑𝐶 ∈ TermCat)
2 termchom.b . . . 4 𝐵 = (Base‘𝐶)
3 termchom.x . . . 4 (𝜑𝑋𝐵)
4 termchom.y . . . 4 (𝜑𝑌𝐵)
5 termchom.h . . . 4 𝐻 = (Hom ‘𝐶)
61, 2, 3, 4, 5termchomn0 49230 . . 3 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
7 neq0 4325 . . 3 (¬ (𝑋𝐻𝑌) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
86, 7sylib 218 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌))
93adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
104adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
11 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
121adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ TermCat)
1312termcthind 49225 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat)
149, 10, 11, 2, 5, 13thinchom 49176 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {𝑓})
15 termchom.i . . . . 5 1 = (Id‘𝐶)
1612, 2, 9, 10, 5, 11, 15termcid 49232 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 = ( 1𝑋))
1716sneqd 4611 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → {𝑓} = {( 1𝑋)})
1814, 17eqtrd 2769 . 2 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {( 1𝑋)})
198, 18exlimddv 1934 1 (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  c0 4306  {csn 4599  cfv 6528  (class class class)co 7400  Basecbs 17215  Hom chom 17269  Idccid 17664  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-cat 17667  df-cid 17668  df-thinc 49167  df-termc 49220
This theorem is referenced by:  termchom2  49235  termcfuncval  49278
  Copyright terms: Public domain W3C validator