| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchom | Structured version Visualization version GIF version | ||
| Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| termchom.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termchom.b | ⊢ 𝐵 = (Base‘𝐶) |
| termchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termchom.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| termchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termchom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | termchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | termchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | termchom.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | termchomn0 49336 | . . 3 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| 7 | neq0 4332 | . . 3 ⊢ (¬ (𝑋𝐻𝑌) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 9 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
| 10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 12 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ TermCat) |
| 13 | 12 | termcthind 49331 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat) |
| 14 | 9, 10, 11, 2, 5, 13 | thinchom 49280 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {𝑓}) |
| 15 | termchom.i | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
| 16 | 12, 2, 9, 10, 5, 11, 15 | termcid 49338 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 = ( 1 ‘𝑋)) |
| 17 | 16 | sneqd 4618 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → {𝑓} = {( 1 ‘𝑋)}) |
| 18 | 14, 17 | eqtrd 2771 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| 19 | 8, 18 | exlimddv 1935 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4313 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 Idccid 17682 TermCatctermc 49325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-cat 17685 df-cid 17686 df-thinc 49271 df-termc 49326 |
| This theorem is referenced by: termchom2 49341 termcfuncval 49384 |
| Copyright terms: Public domain | W3C validator |