| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termchom | Structured version Visualization version GIF version | ||
| Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| termchom.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termchom.b | ⊢ 𝐵 = (Base‘𝐶) |
| termchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| termchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| termchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| termchom.i | ⊢ 1 = (Id‘𝐶) |
| Ref | Expression |
|---|---|
| termchom | ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termchom.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | termchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | termchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 5 | termchom.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | termchomn0 49590 | . . 3 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| 7 | neq0 4301 | . . 3 ⊢ (¬ (𝑋𝐻𝑌) = ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 8 | 6, 7 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐻𝑌)) |
| 9 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋 ∈ 𝐵) |
| 10 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌 ∈ 𝐵) |
| 11 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 12 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ TermCat) |
| 13 | 12 | termcthind 49584 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ ThinCat) |
| 14 | 9, 10, 11, 2, 5, 13 | thinchom 49533 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {𝑓}) |
| 15 | termchom.i | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
| 16 | 12, 2, 9, 10, 5, 11, 15 | termcid 49592 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 = ( 1 ‘𝑋)) |
| 17 | 16 | sneqd 4587 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → {𝑓} = {( 1 ‘𝑋)}) |
| 18 | 14, 17 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑋𝐻𝑌)) → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| 19 | 8, 18 | exlimddv 1936 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∅c0 4282 {csn 4575 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 Hom chom 17178 Idccid 17577 TermCatctermc 49578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-cat 17580 df-cid 17581 df-thinc 49524 df-termc 49579 |
| This theorem is referenced by: termchom2 49595 termcfuncval 49638 |
| Copyright terms: Public domain | W3C validator |