MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsadd Structured version   Visualization version   GIF version

Theorem tsmsadd 24090
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsadd.b 𝐵 = (Base‘𝐺)
tsmsadd.p + = (+g𝐺)
tsmsadd.1 (𝜑𝐺 ∈ CMnd)
tsmsadd.2 (𝜑𝐺 ∈ TopMnd)
tsmsadd.a (𝜑𝐴𝑉)
tsmsadd.f (𝜑𝐹:𝐴𝐵)
tsmsadd.h (𝜑𝐻:𝐴𝐵)
tsmsadd.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmsadd.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmsadd (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))

Proof of Theorem tsmsadd
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsadd.b . . . . . 6 𝐵 = (Base‘𝐺)
2 tsmsadd.1 . . . . . 6 (𝜑𝐺 ∈ CMnd)
3 tsmsadd.2 . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
4 tmdtps 24019 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
6 tsmsadd.a . . . . . 6 (𝜑𝐴𝑉)
7 tsmsadd.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
81, 2, 5, 6, 7tsmscl 24078 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
9 tsmsadd.x . . . . 5 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
108, 9sseldd 3964 . . . 4 (𝜑𝑋𝐵)
11 tsmsadd.h . . . . . 6 (𝜑𝐻:𝐴𝐵)
121, 2, 5, 6, 11tsmscl 24078 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
13 tsmsadd.y . . . . 5 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
1412, 13sseldd 3964 . . . 4 (𝜑𝑌𝐵)
15 tsmsadd.p . . . . 5 + = (+g𝐺)
16 eqid 2736 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
171, 15, 16plusfval 18630 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
1810, 14, 17syl2anc 584 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
19 eqid 2736 . . . . . 6 (TopOpen‘𝐺) = (TopOpen‘𝐺)
201, 19istps 22877 . . . . 5 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
215, 20sylib 218 . . . 4 (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
22 eqid 2736 . . . . . 6 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
23 eqid 2736 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
24 eqid 2736 . . . . . 6 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
2522, 23, 24, 6tsmsfbas 24071 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
26 fgcl 23821 . . . . 5 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
2725, 26syl 17 . . . 4 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
281, 22, 2, 6, 7tsmslem1 24072 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
291, 22, 2, 6, 11tsmslem1 24072 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐻𝑧)) ∈ 𝐵)
301, 19, 22, 24, 2, 6, 7tsmsval 24074 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
319, 30eleqtrd 2837 . . . 4 (𝜑𝑋 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
321, 19, 22, 24, 2, 6, 11tsmsval 24074 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3313, 32eleqtrd 2837 . . . 4 (𝜑𝑌 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3419, 16tmdcn 24026 . . . . . 6 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
353, 34syl 17 . . . . 5 (𝜑 → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3610, 14opelxpd 5698 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
37 txtopon 23534 . . . . . . . 8 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
3821, 21, 37syl2anc 584 . . . . . . 7 (𝜑 → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
39 toponuni 22857 . . . . . . 7 (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4136, 40eleqtrd 2837 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
42 eqid 2736 . . . . . 6 ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))
4342cncnpi 23221 . . . . 5 (((+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) ∧ ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))) → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4435, 41, 43syl2anc 584 . . . 4 (𝜑 → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4521, 21, 27, 28, 29, 31, 33, 44flfcnp2 23950 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
4618, 45eqeltrrd 2836 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
47 cmnmnd 19783 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
482, 47syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
491, 15mndcl 18725 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
50493expb 1120 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
5148, 50sylan 580 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
52 inidm 4207 . . . . 5 (𝐴𝐴) = 𝐴
5351, 7, 11, 6, 6, 52off 7694 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝐵)
541, 19, 22, 24, 2, 6, 53tsmsval 24074 . . 3 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))))
55 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
562adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
57 elinel2 4182 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5857adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
59 elfpw 9371 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
6059simplbi 497 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
61 fssres 6749 . . . . . . . 8 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
627, 60, 61syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
63 fssres 6749 . . . . . . . 8 ((𝐻:𝐴𝐵𝑧𝐴) → (𝐻𝑧):𝑧𝐵)
6411, 60, 63syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧):𝑧𝐵)
65 fvexd 6896 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
6662, 58, 65fdmfifsupp 9392 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
6764, 58, 65fdmfifsupp 9392 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧) finSupp (0g𝐺))
681, 55, 15, 56, 58, 62, 64, 66, 67gsumadd 19909 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
697, 6fexd 7224 . . . . . . . . 9 (𝜑𝐹 ∈ V)
7011, 6fexd 7224 . . . . . . . . 9 (𝜑𝐻 ∈ V)
71 offres 7987 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7269, 70, 71syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7372adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7473oveq2d 7426 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))))
751, 15, 16plusfval 18630 . . . . . . 7 (((𝐺 Σg (𝐹𝑧)) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝑧)) ∈ 𝐵) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
7628, 29, 75syl2anc 584 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
7768, 74, 763eqtr4d 2781 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))
7877mpteq2dva 5219 . . . 4 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧)))))
7978fveq2d 6885 . . 3 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8054, 79eqtrd 2771 . 2 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8146, 80eleqtrrd 2838 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580  cop 4612   cuni 4888  cmpt 5206   × cxp 5657  ran crn 5660  cres 5661  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  Fincfn 8964  Basecbs 17233  +gcplusg 17276  TopOpenctopn 17440  0gc0g 17458   Σg cgsu 17459  +𝑓cplusf 18620  Mndcmnd 18717  CMndccmn 19766  fBascfbas 21308  filGencfg 21309  TopOnctopon 22853  TopSpctps 22875   Cn ccn 23167   CnP ccnp 23168   ×t ctx 23503  Filcfil 23788   fLimf cflf 23878  TopMndctmd 24013   tsums ctsu 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-topgen 17462  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-nei 23041  df-cn 23170  df-cnp 23171  df-tx 23505  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tmd 24015  df-tsms 24070
This theorem is referenced by:  tsmssub  24092  tsmssplit  24095  esumadd  34093  esumaddf  34097
  Copyright terms: Public domain W3C validator