MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsadd Structured version   Visualization version   GIF version

Theorem tsmsadd 22757
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsadd.b 𝐵 = (Base‘𝐺)
tsmsadd.p + = (+g𝐺)
tsmsadd.1 (𝜑𝐺 ∈ CMnd)
tsmsadd.2 (𝜑𝐺 ∈ TopMnd)
tsmsadd.a (𝜑𝐴𝑉)
tsmsadd.f (𝜑𝐹:𝐴𝐵)
tsmsadd.h (𝜑𝐻:𝐴𝐵)
tsmsadd.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmsadd.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmsadd (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))

Proof of Theorem tsmsadd
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsadd.b . . . . . 6 𝐵 = (Base‘𝐺)
2 tsmsadd.1 . . . . . 6 (𝜑𝐺 ∈ CMnd)
3 tsmsadd.2 . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
4 tmdtps 22686 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
6 tsmsadd.a . . . . . 6 (𝜑𝐴𝑉)
7 tsmsadd.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
81, 2, 5, 6, 7tsmscl 22745 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
9 tsmsadd.x . . . . 5 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
108, 9sseldd 3970 . . . 4 (𝜑𝑋𝐵)
11 tsmsadd.h . . . . . 6 (𝜑𝐻:𝐴𝐵)
121, 2, 5, 6, 11tsmscl 22745 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
13 tsmsadd.y . . . . 5 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
1412, 13sseldd 3970 . . . 4 (𝜑𝑌𝐵)
15 tsmsadd.p . . . . 5 + = (+g𝐺)
16 eqid 2823 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
171, 15, 16plusfval 17861 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
1810, 14, 17syl2anc 586 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
19 eqid 2823 . . . . . 6 (TopOpen‘𝐺) = (TopOpen‘𝐺)
201, 19istps 21544 . . . . 5 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
215, 20sylib 220 . . . 4 (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
22 eqid 2823 . . . . . 6 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
23 eqid 2823 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
24 eqid 2823 . . . . . 6 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
2522, 23, 24, 6tsmsfbas 22738 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
26 fgcl 22488 . . . . 5 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
2725, 26syl 17 . . . 4 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
281, 22, 2, 6, 7tsmslem1 22739 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
291, 22, 2, 6, 11tsmslem1 22739 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐻𝑧)) ∈ 𝐵)
301, 19, 22, 24, 2, 6, 7tsmsval 22741 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
319, 30eleqtrd 2917 . . . 4 (𝜑𝑋 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
321, 19, 22, 24, 2, 6, 11tsmsval 22741 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3313, 32eleqtrd 2917 . . . 4 (𝜑𝑌 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3419, 16tmdcn 22693 . . . . . 6 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
353, 34syl 17 . . . . 5 (𝜑 → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3610, 14opelxpd 5595 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
37 txtopon 22201 . . . . . . . 8 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
3821, 21, 37syl2anc 586 . . . . . . 7 (𝜑 → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
39 toponuni 21524 . . . . . . 7 (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4136, 40eleqtrd 2917 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
42 eqid 2823 . . . . . 6 ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))
4342cncnpi 21888 . . . . 5 (((+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) ∧ ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))) → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4435, 41, 43syl2anc 586 . . . 4 (𝜑 → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4521, 21, 27, 28, 29, 31, 33, 44flfcnp2 22617 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
4618, 45eqeltrrd 2916 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
47 cmnmnd 18924 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
482, 47syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
491, 15mndcl 17921 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
50493expb 1116 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
5148, 50sylan 582 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
52 inidm 4197 . . . . 5 (𝐴𝐴) = 𝐴
5351, 7, 11, 6, 6, 52off 7426 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝐵)
541, 19, 22, 24, 2, 6, 53tsmsval 22741 . . 3 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))))
55 eqid 2823 . . . . . . 7 (0g𝐺) = (0g𝐺)
562adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
57 elinel2 4175 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5857adantl 484 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
59 elfpw 8828 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
6059simplbi 500 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
61 fssres 6546 . . . . . . . 8 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
627, 60, 61syl2an 597 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
63 fssres 6546 . . . . . . . 8 ((𝐻:𝐴𝐵𝑧𝐴) → (𝐻𝑧):𝑧𝐵)
6411, 60, 63syl2an 597 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧):𝑧𝐵)
65 fvexd 6687 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
6662, 58, 65fdmfifsupp 8845 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
6764, 58, 65fdmfifsupp 8845 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧) finSupp (0g𝐺))
681, 55, 15, 56, 58, 62, 64, 66, 67gsumadd 19045 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
691fvexi 6686 . . . . . . . . . . 11 𝐵 ∈ V
7069a1i 11 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
71 fex2 7640 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐴𝑉𝐵 ∈ V) → 𝐹 ∈ V)
727, 6, 70, 71syl3anc 1367 . . . . . . . . 9 (𝜑𝐹 ∈ V)
73 fex2 7640 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝐴𝑉𝐵 ∈ V) → 𝐻 ∈ V)
7411, 6, 70, 73syl3anc 1367 . . . . . . . . 9 (𝜑𝐻 ∈ V)
75 offres 7686 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7672, 74, 75syl2anc 586 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7776adantr 483 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7877oveq2d 7174 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))))
791, 15, 16plusfval 17861 . . . . . . 7 (((𝐺 Σg (𝐹𝑧)) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝑧)) ∈ 𝐵) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
8028, 29, 79syl2anc 586 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
8168, 78, 803eqtr4d 2868 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))
8281mpteq2dva 5163 . . . 4 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧)))))
8382fveq2d 6676 . . 3 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8454, 83eqtrd 2858 . 2 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8546, 84eleqtrrd 2918 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  cin 3937  wss 3938  𝒫 cpw 4541  cop 4575   cuni 4840  cmpt 5148   × cxp 5555  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  Fincfn 8511  Basecbs 16485  +gcplusg 16567  TopOpenctopn 16697  0gc0g 16715   Σg cgsu 16716  +𝑓cplusf 17851  Mndcmnd 17913  CMndccmn 18908  fBascfbas 20535  filGencfg 20536  TopOnctopon 21520  TopSpctps 21542   Cn ccn 21834   CnP ccnp 21835   ×t ctx 22170  Filcfil 22455   fLimf cflf 22545  TopMndctmd 22680   tsums ctsu 22736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-topgen 16719  df-plusf 17853  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-cntz 18449  df-cmn 18910  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-ntr 21630  df-nei 21708  df-cn 21837  df-cnp 21838  df-tx 22172  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tmd 22682  df-tsms 22737
This theorem is referenced by:  tsmssub  22759  tsmssplit  22762  esumadd  31318  esumaddf  31322
  Copyright terms: Public domain W3C validator