MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsadd Structured version   Visualization version   GIF version

Theorem tsmsadd 24055
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsadd.b 𝐵 = (Base‘𝐺)
tsmsadd.p + = (+g𝐺)
tsmsadd.1 (𝜑𝐺 ∈ CMnd)
tsmsadd.2 (𝜑𝐺 ∈ TopMnd)
tsmsadd.a (𝜑𝐴𝑉)
tsmsadd.f (𝜑𝐹:𝐴𝐵)
tsmsadd.h (𝜑𝐻:𝐴𝐵)
tsmsadd.x (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
tsmsadd.y (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
Assertion
Ref Expression
tsmsadd (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))

Proof of Theorem tsmsadd
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsadd.b . . . . . 6 𝐵 = (Base‘𝐺)
2 tsmsadd.1 . . . . . 6 (𝜑𝐺 ∈ CMnd)
3 tsmsadd.2 . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
4 tmdtps 23984 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
53, 4syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
6 tsmsadd.a . . . . . 6 (𝜑𝐴𝑉)
7 tsmsadd.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
81, 2, 5, 6, 7tsmscl 24043 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
9 tsmsadd.x . . . . 5 (𝜑𝑋 ∈ (𝐺 tsums 𝐹))
108, 9sseldd 3933 . . . 4 (𝜑𝑋𝐵)
11 tsmsadd.h . . . . . 6 (𝜑𝐻:𝐴𝐵)
121, 2, 5, 6, 11tsmscl 24043 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵)
13 tsmsadd.y . . . . 5 (𝜑𝑌 ∈ (𝐺 tsums 𝐻))
1412, 13sseldd 3933 . . . 4 (𝜑𝑌𝐵)
15 tsmsadd.p . . . . 5 + = (+g𝐺)
16 eqid 2730 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
171, 15, 16plusfval 18547 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
1810, 14, 17syl2anc 584 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) = (𝑋 + 𝑌))
19 eqid 2730 . . . . . 6 (TopOpen‘𝐺) = (TopOpen‘𝐺)
201, 19istps 22842 . . . . 5 (𝐺 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
215, 20sylib 218 . . . 4 (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵))
22 eqid 2730 . . . . . 6 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
23 eqid 2730 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
24 eqid 2730 . . . . . 6 ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})
2522, 23, 24, 6tsmsfbas 24036 . . . . 5 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)))
26 fgcl 23786 . . . . 5 (ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
2725, 26syl 17 . . . 4 (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin)))
281, 22, 2, 6, 7tsmslem1 24037 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝐵)
291, 22, 2, 6, 11tsmslem1 24037 . . . 4 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐻𝑧)) ∈ 𝐵)
301, 19, 22, 24, 2, 6, 7tsmsval 24039 . . . . 5 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
319, 30eleqtrd 2831 . . . 4 (𝜑𝑋 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))))
321, 19, 22, 24, 2, 6, 11tsmsval 24039 . . . . 5 (𝜑 → (𝐺 tsums 𝐻) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3313, 32eleqtrd 2831 . . . 4 (𝜑𝑌 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻𝑧)))))
3419, 16tmdcn 23991 . . . . . 6 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
353, 34syl 17 . . . . 5 (𝜑 → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3610, 14opelxpd 5653 . . . . . 6 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
37 txtopon 23499 . . . . . . . 8 (((TopOpen‘𝐺) ∈ (TopOn‘𝐵) ∧ (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
3821, 21, 37syl2anc 584 . . . . . . 7 (𝜑 → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)))
39 toponuni 22822 . . . . . . 7 (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4038, 39syl 17 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
4136, 40eleqtrd 2831 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)))
42 eqid 2730 . . . . . 6 ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))
4342cncnpi 23186 . . . . 5 (((+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) ∧ ⟨𝑋, 𝑌⟩ ∈ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺))) → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4435, 41, 43syl2anc 584 . . . 4 (𝜑 → (+𝑓𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘⟨𝑋, 𝑌⟩))
4521, 21, 27, 28, 29, 31, 33, 44flfcnp2 23915 . . 3 (𝜑 → (𝑋(+𝑓𝐺)𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
4618, 45eqeltrrd 2830 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
47 cmnmnd 19702 . . . . . . 7 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
482, 47syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
491, 15mndcl 18642 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
50493expb 1120 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
5148, 50sylan 580 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
52 inidm 4175 . . . . 5 (𝐴𝐴) = 𝐴
5351, 7, 11, 6, 6, 52off 7623 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝐵)
541, 19, 22, 24, 2, 6, 53tsmsval 24039 . . 3 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))))
55 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
562adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
57 elinel2 4150 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin)
5857adantl 481 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin)
59 elfpw 9233 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧𝐴𝑧 ∈ Fin))
6059simplbi 497 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧𝐴)
61 fssres 6685 . . . . . . . 8 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧):𝑧𝐵)
627, 60, 61syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧):𝑧𝐵)
63 fssres 6685 . . . . . . . 8 ((𝐻:𝐴𝐵𝑧𝐴) → (𝐻𝑧):𝑧𝐵)
6411, 60, 63syl2an 596 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧):𝑧𝐵)
65 fvexd 6832 . . . . . . . 8 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
6662, 58, 65fdmfifsupp 9254 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑧) finSupp (0g𝐺))
6764, 58, 65fdmfifsupp 9254 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻𝑧) finSupp (0g𝐺))
681, 55, 15, 56, 58, 62, 64, 66, 67gsumadd 19828 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
697, 6fexd 7156 . . . . . . . . 9 (𝜑𝐹 ∈ V)
7011, 6fexd 7156 . . . . . . . . 9 (𝜑𝐻 ∈ V)
71 offres 7910 . . . . . . . . 9 ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7269, 70, 71syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7372adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹f + 𝐻) ↾ 𝑧) = ((𝐹𝑧) ∘f + (𝐻𝑧)))
7473oveq2d 7357 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = (𝐺 Σg ((𝐹𝑧) ∘f + (𝐻𝑧))))
751, 15, 16plusfval 18547 . . . . . . 7 (((𝐺 Σg (𝐹𝑧)) ∈ 𝐵 ∧ (𝐺 Σg (𝐻𝑧)) ∈ 𝐵) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
7628, 29, 75syl2anc 584 . . . . . 6 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))) = ((𝐺 Σg (𝐹𝑧)) + (𝐺 Σg (𝐻𝑧))))
7768, 74, 763eqtr4d 2775 . . . . 5 ((𝜑𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)) = ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))
7877mpteq2dva 5182 . . . 4 (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧)))))
7978fveq2d 6821 . . 3 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹f + 𝐻) ↾ 𝑧)))) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8054, 79eqtrd 2765 . 2 (𝜑 → (𝐺 tsums (𝐹f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹𝑧))(+𝑓𝐺)(𝐺 Σg (𝐻𝑧))))))
8146, 80eleqtrrd 2832 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹f + 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cin 3899  wss 3900  𝒫 cpw 4548  cop 4580   cuni 4857  cmpt 5170   × cxp 5612  ran crn 5615  cres 5616  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  Fincfn 8864  Basecbs 17112  +gcplusg 17153  TopOpenctopn 17317  0gc0g 17335   Σg cgsu 17336  +𝑓cplusf 18537  Mndcmnd 18634  CMndccmn 19685  fBascfbas 21272  filGencfg 21273  TopOnctopon 22818  TopSpctps 22840   Cn ccn 23132   CnP ccnp 23133   ×t ctx 23468  Filcfil 23753   fLimf cflf 23843  TopMndctmd 23978   tsums ctsu 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-gsum 17338  df-topgen 17339  df-plusf 18539  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-cntz 19222  df-cmn 19687  df-fbas 21281  df-fg 21282  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-ntr 22928  df-nei 23006  df-cn 23135  df-cnp 23136  df-tx 23470  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-tmd 23980  df-tsms 24035
This theorem is referenced by:  tsmssub  24057  tsmssplit  24060  esumadd  34060  esumaddf  34064
  Copyright terms: Public domain W3C validator