Step | Hyp | Ref
| Expression |
1 | | tsmsadd.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
2 | | tsmsadd.1 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ CMnd) |
3 | | tsmsadd.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
4 | | tmdtps 23135 |
. . . . . . 7
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TopSp) |
6 | | tsmsadd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | tsmsadd.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
8 | 1, 2, 5, 6, 7 | tsmscl 23194 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
9 | | tsmsadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
10 | 8, 9 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | | tsmsadd.h |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
12 | 1, 2, 5, 6, 11 | tsmscl 23194 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
13 | | tsmsadd.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
14 | 12, 13 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | | tsmsadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
16 | | eqid 2738 |
. . . . 5
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
17 | 1, 15, 16 | plusfval 18248 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
18 | 10, 14, 17 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
19 | | eqid 2738 |
. . . . . 6
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
20 | 1, 19 | istps 21991 |
. . . . 5
⊢ (𝐺 ∈ TopSp ↔
(TopOpen‘𝐺) ∈
(TopOn‘𝐵)) |
21 | 5, 20 | sylib 217 |
. . . 4
⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
22 | | eqid 2738 |
. . . . . 6
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
23 | | eqid 2738 |
. . . . . 6
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
24 | | eqid 2738 |
. . . . . 6
⊢ ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
25 | 22, 23, 24, 6 | tsmsfbas 23187 |
. . . . 5
⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin))) |
26 | | fgcl 22937 |
. . . . 5
⊢ (ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫
𝐴 ∩ Fin)filGenran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
28 | 1, 22, 2, 6, 7 | tsmslem1 23188 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝐵) |
29 | 1, 22, 2, 6, 11 | tsmslem1 23188 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐻 ↾ 𝑧)) ∈ 𝐵) |
30 | 1, 19, 22, 24, 2, 6, 7 | tsmsval 23190 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
31 | 9, 30 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
32 | 1, 19, 22, 24, 2, 6, 11 | tsmsval 23190 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐻) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻 ↾ 𝑧))))) |
33 | 13, 32 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻 ↾ 𝑧))))) |
34 | 19, 16 | tmdcn 23142 |
. . . . . 6
⊢ (𝐺 ∈ TopMnd →
(+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
35 | 3, 34 | syl 17 |
. . . . 5
⊢ (𝜑 →
(+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
36 | 10, 14 | opelxpd 5618 |
. . . . . 6
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
37 | | txtopon 22650 |
. . . . . . . 8
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘𝐵)
∧ (TopOpen‘𝐺)
∈ (TopOn‘𝐵))
→ ((TopOpen‘𝐺)
×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵))) |
38 | 21, 21, 37 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((TopOpen‘𝐺) ×t
(TopOpen‘𝐺)) ∈
(TopOn‘(𝐵 ×
𝐵))) |
39 | | toponuni 21971 |
. . . . . . 7
⊢
(((TopOpen‘𝐺)
×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 × 𝐵) = ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
41 | 36, 40 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
42 | | eqid 2738 |
. . . . . 6
⊢ ∪ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ∪ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) |
43 | 42 | cncnpi 22337 |
. . . . 5
⊢
(((+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) ∧ 〈𝑋, 𝑌〉 ∈ ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) →
(+𝑓‘𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘〈𝑋, 𝑌〉)) |
44 | 35, 41, 43 | syl2anc 583 |
. . . 4
⊢ (𝜑 →
(+𝑓‘𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘〈𝑋, 𝑌〉)) |
45 | 21, 21, 27, 28, 29, 31, 33, 44 | flfcnp2 23066 |
. . 3
⊢ (𝜑 → (𝑋(+𝑓‘𝐺)𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
46 | 18, 45 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
47 | | cmnmnd 19317 |
. . . . . . 7
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
48 | 2, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
49 | 1, 15 | mndcl 18308 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
50 | 49 | 3expb 1118 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
51 | 48, 50 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
52 | | inidm 4149 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
53 | 51, 7, 11, 6, 6, 52 | off 7529 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐻):𝐴⟶𝐵) |
54 | 1, 19, 22, 24, 2, 6, 53 | tsmsval 23190 |
. . 3
⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘f + 𝐻) ↾ 𝑧))))) |
55 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
56 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd) |
57 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin) |
58 | 57 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin) |
59 | | elfpw 9051 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin)) |
60 | 59 | simplbi 497 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ⊆ 𝐴) |
61 | | fssres 6624 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ⊆ 𝐴) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
62 | 7, 60, 61 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
63 | | fssres 6624 |
. . . . . . . 8
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑧 ⊆ 𝐴) → (𝐻 ↾ 𝑧):𝑧⟶𝐵) |
64 | 11, 60, 63 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 ↾ 𝑧):𝑧⟶𝐵) |
65 | | fvexd 6771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) →
(0g‘𝐺)
∈ V) |
66 | 62, 58, 65 | fdmfifsupp 9068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧) finSupp (0g‘𝐺)) |
67 | 64, 58, 65 | fdmfifsupp 9068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 ↾ 𝑧) finSupp (0g‘𝐺)) |
68 | 1, 55, 15, 56, 58, 62, 64, 66, 67 | gsumadd 19439 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ↾ 𝑧) ∘f + (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
69 | 7, 6 | fexd 7085 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
70 | 11, 6 | fexd 7085 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
71 | | offres 7799 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 ∘f + 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘f + (𝐻 ↾ 𝑧))) |
72 | 69, 70, 71 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘f + 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘f + (𝐻 ↾ 𝑧))) |
73 | 72 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ∘f + 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘f + (𝐻 ↾ 𝑧))) |
74 | 73 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ∘f + 𝐻) ↾ 𝑧)) = (𝐺 Σg ((𝐹 ↾ 𝑧) ∘f + (𝐻 ↾ 𝑧)))) |
75 | 1, 15, 16 | plusfval 18248 |
. . . . . . 7
⊢ (((𝐺 Σg
(𝐹 ↾ 𝑧)) ∈ 𝐵 ∧ (𝐺 Σg (𝐻 ↾ 𝑧)) ∈ 𝐵) → ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
76 | 28, 29, 75 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
77 | 68, 74, 76 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ∘f + 𝐻) ↾ 𝑧)) = ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))) |
78 | 77 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘f + 𝐻) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))))) |
79 | 78 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘f + 𝐻) ↾ 𝑧)))) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
80 | 54, 79 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐺 tsums (𝐹 ∘f + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
81 | 46, 80 | eleqtrrd 2842 |
1
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹 ∘f + 𝐻))) |