MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submtmd Structured version   Visualization version   GIF version

Theorem submtmd 24133
Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
subgtgp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
submtmd ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)

Proof of Theorem submtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgtgp.h . . . 4 𝐻 = (𝐺s 𝑆)
21submmnd 18848 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
32adantl 481 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ Mnd)
4 tmdtps 24105 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
5 resstps 23216 . . . 4 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
64, 5sylan 579 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
71, 6eqeltrid 2848 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopSp)
8 eqid 2740 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
9 eqid 2740 . . . . . 6 (+g𝐻) = (+g𝐻)
10 eqid 2740 . . . . . 6 (+𝑓𝐻) = (+𝑓𝐻)
118, 9, 10plusffval 18684 . . . . 5 (+𝑓𝐻) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦))
121submbas 18849 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
1312adantl 481 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 = (Base‘𝐻))
14 eqid 2740 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
151, 14ressplusg 17349 . . . . . . . 8 (𝑆 ∈ (SubMnd‘𝐺) → (+g𝐺) = (+g𝐻))
1615adantl 481 . . . . . . 7 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+g𝐺) = (+g𝐻))
1716oveqd 7465 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1813, 13, 17mpoeq123dv 7525 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g𝐻)𝑦)))
1911, 18eqtr4id 2799 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) = (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)))
20 eqid 2740 . . . . 5 ((TopOpen‘𝐺) ↾t 𝑆) = ((TopOpen‘𝐺) ↾t 𝑆)
21 eqid 2740 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
22 eqid 2740 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
2321, 22tmdtopon 24110 . . . . . 6 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2423adantr 480 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
2522submss 18844 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2625adantl 481 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 ⊆ (Base‘𝐺))
27 eqid 2740 . . . . . . . 8 (+𝑓𝐺) = (+𝑓𝐺)
2822, 14, 27plusffval 18684 . . . . . . 7 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2921, 27tmdcn 24112 . . . . . . 7 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3028, 29eqeltrrid 2849 . . . . . 6 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3130adantr 480 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
3220, 24, 26, 20, 24, 26, 31cnmpt2res 23706 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥𝑆, 𝑦𝑆 ↦ (𝑥(+g𝐺)𝑦)) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
3319, 32eqeltrd 2844 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)))
348, 10mndplusf 18790 . . . . . 6 (𝐻 ∈ Mnd → (+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻))
35 frn 6754 . . . . . 6 ((+𝑓𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
363, 34, 353syl 18 . . . . 5 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ (Base‘𝐻))
3736, 13sseqtrrd 4050 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran (+𝑓𝐻) ⊆ 𝑆)
38 cnrest2 23315 . . . 4 (((TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)) ∧ ran (+𝑓𝐻) ⊆ 𝑆𝑆 ⊆ (Base‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
3924, 37, 26, 38syl3anc 1371 . . 3 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ((+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
4033, 39mpbid 232 . 2 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))
411, 21resstopn 23215 . . 3 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
4210, 41istmd 24103 . 2 (𝐻 ∈ TopMnd ↔ (𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧ (+𝑓𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))))
433, 7, 40, 42syl3anbrc 1343 1 ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976   × cxp 5698  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  s cress 17287  +gcplusg 17311  t crest 17480  TopOpenctopn 17481  +𝑓cplusf 18675  Mndcmnd 18772  SubMndcsubmnd 18817  TopOnctopon 22937  TopSpctps 22959   Cn ccn 23253   ×t ctx 23589  TopMndctmd 24099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-rest 17482  df-topn 17483  df-0g 17501  df-topgen 17503  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-tx 23591  df-tmd 24101
This theorem is referenced by:  subgtgp  24134  symgtgp  24135  nrgtdrg  24735  iistmd  33848
  Copyright terms: Public domain W3C validator