Step | Hyp | Ref
| Expression |
1 | | subgtgp.h |
. . . 4
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
2 | 1 | submmnd 18433 |
. . 3
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd) |
3 | 2 | adantl 481 |
. 2
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ Mnd) |
4 | | tmdtps 23208 |
. . . 4
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
5 | | resstps 22319 |
. . . 4
⊢ ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺 ↾s 𝑆) ∈ TopSp) |
6 | 4, 5 | sylan 579 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺 ↾s 𝑆) ∈ TopSp) |
7 | 1, 6 | eqeltrid 2844 |
. 2
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopSp) |
8 | | eqid 2739 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
9 | | eqid 2739 |
. . . . . 6
⊢
(+g‘𝐻) = (+g‘𝐻) |
10 | | eqid 2739 |
. . . . . 6
⊢
(+𝑓‘𝐻) = (+𝑓‘𝐻) |
11 | 8, 9, 10 | plusffval 18313 |
. . . . 5
⊢
(+𝑓‘𝐻) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g‘𝐻)𝑦)) |
12 | 1 | submbas 18434 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻)) |
13 | 12 | adantl 481 |
. . . . . 6
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 = (Base‘𝐻)) |
14 | | eqid 2739 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
15 | 1, 14 | ressplusg 16981 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
16 | 15 | adantl 481 |
. . . . . . 7
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) →
(+g‘𝐺) =
(+g‘𝐻)) |
17 | 16 | oveqd 7285 |
. . . . . 6
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
18 | 13, 13, 17 | mpoeq123dv 7341 |
. . . . 5
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ (Base‘𝐻), 𝑦 ∈ (Base‘𝐻) ↦ (𝑥(+g‘𝐻)𝑦))) |
19 | 11, 18 | eqtr4id 2798 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) →
(+𝑓‘𝐻) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦))) |
20 | | eqid 2739 |
. . . . 5
⊢
((TopOpen‘𝐺)
↾t 𝑆) =
((TopOpen‘𝐺)
↾t 𝑆) |
21 | | eqid 2739 |
. . . . . . 7
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
22 | | eqid 2739 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
23 | 21, 22 | tmdtopon 23213 |
. . . . . 6
⊢ (𝐺 ∈ TopMnd →
(TopOpen‘𝐺) ∈
(TopOn‘(Base‘𝐺))) |
24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (TopOpen‘𝐺) ∈
(TopOn‘(Base‘𝐺))) |
25 | 22 | submss 18429 |
. . . . . 6
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
27 | | eqid 2739 |
. . . . . . . 8
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
28 | 22, 14, 27 | plusffval 18313 |
. . . . . . 7
⊢
(+𝑓‘𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) |
29 | 21, 27 | tmdcn 23215 |
. . . . . . 7
⊢ (𝐺 ∈ TopMnd →
(+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
30 | 28, 29 | eqeltrrid 2845 |
. . . . . 6
⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝐺)𝑦)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
32 | 20, 24, 26, 20, 24, 26, 31 | cnmpt2res 22809 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ (𝑥(+g‘𝐺)𝑦)) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺))) |
33 | 19, 32 | eqeltrd 2840 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) →
(+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺))) |
34 | 8, 10 | mndplusf 18384 |
. . . . . 6
⊢ (𝐻 ∈ Mnd →
(+𝑓‘𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻)) |
35 | | frn 6603 |
. . . . . 6
⊢
((+𝑓‘𝐻):((Base‘𝐻) × (Base‘𝐻))⟶(Base‘𝐻) → ran
(+𝑓‘𝐻) ⊆ (Base‘𝐻)) |
36 | 3, 34, 35 | 3syl 18 |
. . . . 5
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran
(+𝑓‘𝐻) ⊆ (Base‘𝐻)) |
37 | 36, 13 | sseqtrrd 3966 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → ran
(+𝑓‘𝐻) ⊆ 𝑆) |
38 | | cnrest2 22418 |
. . . 4
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘(Base‘𝐺)) ∧ ran
(+𝑓‘𝐻) ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝐺)) →
((+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔
(+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))) |
39 | 24, 37, 26, 38 | syl3anc 1369 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) →
((+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn (TopOpen‘𝐺)) ↔
(+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))) |
40 | 33, 39 | mpbid 231 |
. 2
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) →
(+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆))) |
41 | 1, 21 | resstopn 22318 |
. . 3
⊢
((TopOpen‘𝐺)
↾t 𝑆) =
(TopOpen‘𝐻) |
42 | 10, 41 | istmd 23206 |
. 2
⊢ (𝐻 ∈ TopMnd ↔ (𝐻 ∈ Mnd ∧ 𝐻 ∈ TopSp ∧
(+𝑓‘𝐻) ∈ ((((TopOpen‘𝐺) ↾t 𝑆) ×t ((TopOpen‘𝐺) ↾t 𝑆)) Cn ((TopOpen‘𝐺) ↾t 𝑆)))) |
43 | 3, 7, 40, 42 | syl3anbrc 1341 |
1
⊢ ((𝐺 ∈ TopMnd ∧ 𝑆 ∈ (SubMnd‘𝐺)) → 𝐻 ∈ TopMnd) |