| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version | ||
| Description: Continuity of the group sum; analogue of cnmpt12f 23604 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| cnmpt1plusg.p | ⊢ + = (+g‘𝐺) |
| cnmpt1plusg.g | ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| cnmpt1plusg.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| cnmpt1plusg.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
| cnmpt1plusg.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1plusg | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1plusg.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt1plusg.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopMnd) | |
| 3 | tgpcn.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 3, 4 | tmdtopon 24019 | . . . . . . 7 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 7 | cnmpt1plusg.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
| 8 | cnf2 23187 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
| 9 | 1, 6, 7, 8 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
| 10 | 9 | fvmptelcdm 7103 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
| 11 | cnmpt1plusg.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
| 12 | cnf2 23187 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
| 13 | 1, 6, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
| 14 | 13 | fvmptelcdm 7103 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
| 15 | cnmpt1plusg.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 16 | eqid 2735 | . . . . 5 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 17 | 4, 15, 16 | plusfval 18625 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 18 | 10, 14, 17 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 19 | 18 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵))) |
| 20 | 3, 16 | tmdcn 24021 | . . . 4 ⊢ (𝐺 ∈ TopMnd → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 21 | 2, 20 | syl 17 | . . 3 ⊢ (𝜑 → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 1, 7, 11, 21 | cnmpt12f 23604 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ (𝐾 Cn 𝐽)) |
| 23 | 19, 22 | eqeltrrd 2835 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 TopOpenctopn 17435 +𝑓cplusf 18615 TopOnctopon 22848 Cn ccn 23162 ×t ctx 23498 TopMndctmd 24008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-topgen 17457 df-plusf 18617 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-tx 23500 df-tmd 24010 |
| This theorem is referenced by: tmdmulg 24030 tmdgsum 24033 tmdlactcn 24040 clsnsg 24048 tgpt0 24057 cnmpt1mulr 24120 |
| Copyright terms: Public domain | W3C validator |