![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version |
Description: Continuity of the group sum; analogue of cnmpt12f 23690 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1plusg.p | ⊢ + = (+g‘𝐺) |
cnmpt1plusg.g | ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
cnmpt1plusg.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt1plusg.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
cnmpt1plusg.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1plusg | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1plusg.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1plusg.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopMnd) | |
3 | tgpcn.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 3, 4 | tmdtopon 24105 | . . . . . . 7 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
7 | cnmpt1plusg.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
8 | cnf2 23273 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
9 | 1, 6, 7, 8 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
10 | 9 | fvmptelcdm 7133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
11 | cnmpt1plusg.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
12 | cnf2 23273 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
13 | 1, 6, 11, 12 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
14 | 13 | fvmptelcdm 7133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
15 | cnmpt1plusg.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
16 | eqid 2735 | . . . . 5 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
17 | 4, 15, 16 | plusfval 18673 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
18 | 10, 14, 17 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
19 | 18 | mpteq2dva 5248 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵))) |
20 | 3, 16 | tmdcn 24107 | . . . 4 ⊢ (𝐺 ∈ TopMnd → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
21 | 2, 20 | syl 17 | . . 3 ⊢ (𝜑 → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 1, 7, 11, 21 | cnmpt12f 23690 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ (𝐾 Cn 𝐽)) |
23 | 19, 22 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 TopOpenctopn 17468 +𝑓cplusf 18663 TopOnctopon 22932 Cn ccn 23248 ×t ctx 23584 TopMndctmd 24094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-topgen 17490 df-plusf 18665 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-tx 23586 df-tmd 24096 |
This theorem is referenced by: tmdmulg 24116 tmdgsum 24119 tmdlactcn 24126 clsnsg 24134 tgpt0 24143 cnmpt1mulr 24206 |
Copyright terms: Public domain | W3C validator |