| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version | ||
| Description: Continuity of the group sum; analogue of cnmpt12f 23576 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| cnmpt1plusg.p | ⊢ + = (+g‘𝐺) |
| cnmpt1plusg.g | ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| cnmpt1plusg.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| cnmpt1plusg.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
| cnmpt1plusg.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
| Ref | Expression |
|---|---|
| cnmpt1plusg | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1plusg.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
| 2 | cnmpt1plusg.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopMnd) | |
| 3 | tgpcn.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | 3, 4 | tmdtopon 23991 | . . . . . . 7 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 7 | cnmpt1plusg.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
| 8 | cnf2 23159 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
| 9 | 1, 6, 7, 8 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
| 10 | 9 | fvmptelcdm 7041 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
| 11 | cnmpt1plusg.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
| 12 | cnf2 23159 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
| 13 | 1, 6, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
| 14 | 13 | fvmptelcdm 7041 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
| 15 | cnmpt1plusg.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 17 | 4, 15, 16 | plusfval 18550 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 18 | 10, 14, 17 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 19 | 18 | mpteq2dva 5179 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵))) |
| 20 | 3, 16 | tmdcn 23993 | . . . 4 ⊢ (𝐺 ∈ TopMnd → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 21 | 2, 20 | syl 17 | . . 3 ⊢ (𝜑 → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 1, 7, 11, 21 | cnmpt12f 23576 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ (𝐾 Cn 𝐽)) |
| 23 | 19, 22 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 TopOpenctopn 17320 +𝑓cplusf 18540 TopOnctopon 22820 Cn ccn 23134 ×t ctx 23470 TopMndctmd 23980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-topgen 17342 df-plusf 18542 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cn 23137 df-tx 23472 df-tmd 23982 |
| This theorem is referenced by: tmdmulg 24002 tmdgsum 24005 tmdlactcn 24012 clsnsg 24020 tgpt0 24029 cnmpt1mulr 24092 |
| Copyright terms: Public domain | W3C validator |