MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1plusg Structured version   Visualization version   GIF version

Theorem cnmpt1plusg 23981
Description: Continuity of the group sum; analogue of cnmpt12f 23560 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt1plusg.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
cnmpt1plusg.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
Assertion
Ref Expression
cnmpt1plusg (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   + (𝑥)

Proof of Theorem cnmpt1plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt1plusg.g . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
3 tgpcn.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
4 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
53, 4tmdtopon 23975 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 cnmpt1plusg.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
8 cnf2 23143 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
91, 6, 7, 8syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
109fvmptelcdm 7088 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐺))
11 cnmpt1plusg.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
12 cnf2 23143 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
131, 6, 11, 12syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
1413fvmptelcdm 7088 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝐺))
15 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
16 eqid 2730 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
174, 15, 16plusfval 18581 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1810, 14, 17syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1918mpteq2dva 5203 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋 ↦ (𝐴 + 𝐵)))
203, 16tmdcn 23977 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
212, 20syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
221, 7, 11, 21cnmpt12f 23560 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ (𝐾 Cn 𝐽))
2319, 22eqeltrrd 2830 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  TopOpenctopn 17391  +𝑓cplusf 18571  TopOnctopon 22804   Cn ccn 23118   ×t ctx 23454  TopMndctmd 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-topgen 17413  df-plusf 18573  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-tx 23456  df-tmd 23966
This theorem is referenced by:  tmdmulg  23986  tmdgsum  23989  tmdlactcn  23996  clsnsg  24004  tgpt0  24013  cnmpt1mulr  24076
  Copyright terms: Public domain W3C validator