MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1plusg Structured version   Visualization version   GIF version

Theorem cnmpt1plusg 23997
Description: Continuity of the group sum; analogue of cnmpt12f 23576 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt1plusg.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
cnmpt1plusg.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
Assertion
Ref Expression
cnmpt1plusg (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   + (𝑥)

Proof of Theorem cnmpt1plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt1plusg.g . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
3 tgpcn.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
4 eqid 2731 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
53, 4tmdtopon 23991 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 cnmpt1plusg.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
8 cnf2 23159 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
91, 6, 7, 8syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
109fvmptelcdm 7041 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐺))
11 cnmpt1plusg.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
12 cnf2 23159 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
131, 6, 11, 12syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
1413fvmptelcdm 7041 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝐺))
15 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
16 eqid 2731 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
174, 15, 16plusfval 18550 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1810, 14, 17syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1918mpteq2dva 5179 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋 ↦ (𝐴 + 𝐵)))
203, 16tmdcn 23993 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
212, 20syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
221, 7, 11, 21cnmpt12f 23576 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ (𝐾 Cn 𝐽))
2319, 22eqeltrrd 2832 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  TopOpenctopn 17320  +𝑓cplusf 18540  TopOnctopon 22820   Cn ccn 23134   ×t ctx 23470  TopMndctmd 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-topgen 17342  df-plusf 18542  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cn 23137  df-tx 23472  df-tmd 23982
This theorem is referenced by:  tmdmulg  24002  tmdgsum  24005  tmdlactcn  24012  clsnsg  24020  tgpt0  24029  cnmpt1mulr  24092
  Copyright terms: Public domain W3C validator