![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version |
Description: Continuity of the group sum; analogue of cnmpt12f 23161 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | β’ π½ = (TopOpenβπΊ) |
cnmpt1plusg.p | β’ + = (+gβπΊ) |
cnmpt1plusg.g | β’ (π β πΊ β TopMnd) |
cnmpt1plusg.k | β’ (π β πΎ β (TopOnβπ)) |
cnmpt1plusg.a | β’ (π β (π₯ β π β¦ π΄) β (πΎ Cn π½)) |
cnmpt1plusg.b | β’ (π β (π₯ β π β¦ π΅) β (πΎ Cn π½)) |
Ref | Expression |
---|---|
cnmpt1plusg | β’ (π β (π₯ β π β¦ (π΄ + π΅)) β (πΎ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1plusg.k | . . . . . 6 β’ (π β πΎ β (TopOnβπ)) | |
2 | cnmpt1plusg.g | . . . . . . 7 β’ (π β πΊ β TopMnd) | |
3 | tgpcn.j | . . . . . . . 8 β’ π½ = (TopOpenβπΊ) | |
4 | eqid 2732 | . . . . . . . 8 β’ (BaseβπΊ) = (BaseβπΊ) | |
5 | 3, 4 | tmdtopon 23576 | . . . . . . 7 β’ (πΊ β TopMnd β π½ β (TopOnβ(BaseβπΊ))) |
6 | 2, 5 | syl 17 | . . . . . 6 β’ (π β π½ β (TopOnβ(BaseβπΊ))) |
7 | cnmpt1plusg.a | . . . . . 6 β’ (π β (π₯ β π β¦ π΄) β (πΎ Cn π½)) | |
8 | cnf2 22744 | . . . . . 6 β’ ((πΎ β (TopOnβπ) β§ π½ β (TopOnβ(BaseβπΊ)) β§ (π₯ β π β¦ π΄) β (πΎ Cn π½)) β (π₯ β π β¦ π΄):πβΆ(BaseβπΊ)) | |
9 | 1, 6, 7, 8 | syl3anc 1371 | . . . . 5 β’ (π β (π₯ β π β¦ π΄):πβΆ(BaseβπΊ)) |
10 | 9 | fvmptelcdm 7109 | . . . 4 β’ ((π β§ π₯ β π) β π΄ β (BaseβπΊ)) |
11 | cnmpt1plusg.b | . . . . . 6 β’ (π β (π₯ β π β¦ π΅) β (πΎ Cn π½)) | |
12 | cnf2 22744 | . . . . . 6 β’ ((πΎ β (TopOnβπ) β§ π½ β (TopOnβ(BaseβπΊ)) β§ (π₯ β π β¦ π΅) β (πΎ Cn π½)) β (π₯ β π β¦ π΅):πβΆ(BaseβπΊ)) | |
13 | 1, 6, 11, 12 | syl3anc 1371 | . . . . 5 β’ (π β (π₯ β π β¦ π΅):πβΆ(BaseβπΊ)) |
14 | 13 | fvmptelcdm 7109 | . . . 4 β’ ((π β§ π₯ β π) β π΅ β (BaseβπΊ)) |
15 | cnmpt1plusg.p | . . . . 5 β’ + = (+gβπΊ) | |
16 | eqid 2732 | . . . . 5 β’ (+πβπΊ) = (+πβπΊ) | |
17 | 4, 15, 16 | plusfval 18564 | . . . 4 β’ ((π΄ β (BaseβπΊ) β§ π΅ β (BaseβπΊ)) β (π΄(+πβπΊ)π΅) = (π΄ + π΅)) |
18 | 10, 14, 17 | syl2anc 584 | . . 3 β’ ((π β§ π₯ β π) β (π΄(+πβπΊ)π΅) = (π΄ + π΅)) |
19 | 18 | mpteq2dva 5247 | . 2 β’ (π β (π₯ β π β¦ (π΄(+πβπΊ)π΅)) = (π₯ β π β¦ (π΄ + π΅))) |
20 | 3, 16 | tmdcn 23578 | . . . 4 β’ (πΊ β TopMnd β (+πβπΊ) β ((π½ Γt π½) Cn π½)) |
21 | 2, 20 | syl 17 | . . 3 β’ (π β (+πβπΊ) β ((π½ Γt π½) Cn π½)) |
22 | 1, 7, 11, 21 | cnmpt12f 23161 | . 2 β’ (π β (π₯ β π β¦ (π΄(+πβπΊ)π΅)) β (πΎ Cn π½)) |
23 | 19, 22 | eqeltrrd 2834 | 1 β’ (π β (π₯ β π β¦ (π΄ + π΅)) β (πΎ Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 TopOpenctopn 17363 +πcplusf 18554 TopOnctopon 22403 Cn ccn 22719 Γt ctx 23055 TopMndctmd 23565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-topgen 17385 df-plusf 18556 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cn 22722 df-tx 23057 df-tmd 23567 |
This theorem is referenced by: tmdmulg 23587 tmdgsum 23590 tmdlactcn 23597 clsnsg 23605 tgpt0 23614 cnmpt1mulr 23677 |
Copyright terms: Public domain | W3C validator |