MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1plusg Structured version   Visualization version   GIF version

Theorem cnmpt1plusg 23582
Description: Continuity of the group sum; analogue of cnmpt12f 23161 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpenβ€˜πΊ)
cnmpt1plusg.p + = (+gβ€˜πΊ)
cnmpt1plusg.g (πœ‘ β†’ 𝐺 ∈ TopMnd)
cnmpt1plusg.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
cnmpt1plusg.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽))
cnmpt1plusg.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐾 Cn 𝐽))
Assertion
Ref Expression
cnmpt1plusg (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 + 𝐡)) ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   π‘₯,𝐺   π‘₯,𝐽   π‘₯,𝐾   πœ‘,π‘₯   π‘₯,𝑋
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   + (π‘₯)

Proof of Theorem cnmpt1plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . 6 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘‹))
2 cnmpt1plusg.g . . . . . . 7 (πœ‘ β†’ 𝐺 ∈ TopMnd)
3 tgpcn.j . . . . . . . 8 𝐽 = (TopOpenβ€˜πΊ)
4 eqid 2732 . . . . . . . 8 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
53, 4tmdtopon 23576 . . . . . . 7 (𝐺 ∈ TopMnd β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)))
62, 5syl 17 . . . . . 6 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)))
7 cnmpt1plusg.a . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽))
8 cnf2 22744 . . . . . 6 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆ(Baseβ€˜πΊ))
91, 6, 7, 8syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆ(Baseβ€˜πΊ))
109fvmptelcdm 7109 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐴 ∈ (Baseβ€˜πΊ))
11 cnmpt1plusg.b . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐾 Cn 𝐽))
12 cnf2 22744 . . . . . 6 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐾 Cn 𝐽)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆ(Baseβ€˜πΊ))
131, 6, 11, 12syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆ(Baseβ€˜πΊ))
1413fvmptelcdm 7109 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐡 ∈ (Baseβ€˜πΊ))
15 cnmpt1plusg.p . . . . 5 + = (+gβ€˜πΊ)
16 eqid 2732 . . . . 5 (+π‘“β€˜πΊ) = (+π‘“β€˜πΊ)
174, 15, 16plusfval 18564 . . . 4 ((𝐴 ∈ (Baseβ€˜πΊ) ∧ 𝐡 ∈ (Baseβ€˜πΊ)) β†’ (𝐴(+π‘“β€˜πΊ)𝐡) = (𝐴 + 𝐡))
1810, 14, 17syl2anc 584 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ (𝐴(+π‘“β€˜πΊ)𝐡) = (𝐴 + 𝐡))
1918mpteq2dva 5247 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴(+π‘“β€˜πΊ)𝐡)) = (π‘₯ ∈ 𝑋 ↦ (𝐴 + 𝐡)))
203, 16tmdcn 23578 . . . 4 (𝐺 ∈ TopMnd β†’ (+π‘“β€˜πΊ) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
212, 20syl 17 . . 3 (πœ‘ β†’ (+π‘“β€˜πΊ) ∈ ((𝐽 Γ—t 𝐽) Cn 𝐽))
221, 7, 11, 21cnmpt12f 23161 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴(+π‘“β€˜πΊ)𝐡)) ∈ (𝐾 Cn 𝐽))
2319, 22eqeltrrd 2834 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ (𝐴 + 𝐡)) ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  TopOpenctopn 17363  +𝑓cplusf 18554  TopOnctopon 22403   Cn ccn 22719   Γ—t ctx 23055  TopMndctmd 23565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818  df-topgen 17385  df-plusf 18556  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cn 22722  df-tx 23057  df-tmd 23567
This theorem is referenced by:  tmdmulg  23587  tmdgsum  23590  tmdlactcn  23597  clsnsg  23605  tgpt0  23614  cnmpt1mulr  23677
  Copyright terms: Public domain W3C validator