MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1plusg Structured version   Visualization version   GIF version

Theorem cnmpt1plusg 23991
Description: Continuity of the group sum; analogue of cnmpt12f 23570 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt1plusg.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
cnmpt1plusg.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
Assertion
Ref Expression
cnmpt1plusg (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   + (𝑥)

Proof of Theorem cnmpt1plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt1plusg.g . . . . . . 7 (𝜑𝐺 ∈ TopMnd)
3 tgpcn.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
4 eqid 2729 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
53, 4tmdtopon 23985 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
62, 5syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
7 cnmpt1plusg.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽))
8 cnf2 23153 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
91, 6, 7, 8syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶(Base‘𝐺))
109fvmptelcdm 7051 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ (Base‘𝐺))
11 cnmpt1plusg.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽))
12 cnf2 23153 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
131, 6, 11, 12syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋⟶(Base‘𝐺))
1413fvmptelcdm 7051 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ (Base‘𝐺))
15 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
16 eqid 2729 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
174, 15, 16plusfval 18540 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1810, 14, 17syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
1918mpteq2dva 5188 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋 ↦ (𝐴 + 𝐵)))
203, 16tmdcn 23987 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
212, 20syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
221, 7, 11, 21cnmpt12f 23570 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ (𝐾 Cn 𝐽))
2319, 22eqeltrrd 2829 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180  TopOpenctopn 17344  +𝑓cplusf 18530  TopOnctopon 22814   Cn ccn 23128   ×t ctx 23464  TopMndctmd 23974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-topgen 17366  df-plusf 18532  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cn 23131  df-tx 23466  df-tmd 23976
This theorem is referenced by:  tmdmulg  23996  tmdgsum  23999  tmdlactcn  24006  clsnsg  24014  tgpt0  24023  cnmpt1mulr  24086
  Copyright terms: Public domain W3C validator