Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version |
Description: Continuity of the group sum; analogue of cnmpt12f 22725 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1plusg.p | ⊢ + = (+g‘𝐺) |
cnmpt1plusg.g | ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
cnmpt1plusg.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt1plusg.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
cnmpt1plusg.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1plusg | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1plusg.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1plusg.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopMnd) | |
3 | tgpcn.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 3, 4 | tmdtopon 23140 | . . . . . . 7 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
7 | cnmpt1plusg.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
8 | cnf2 22308 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
9 | 1, 6, 7, 8 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
10 | 9 | fvmptelrn 6969 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
11 | cnmpt1plusg.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
12 | cnf2 22308 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
13 | 1, 6, 11, 12 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
14 | 13 | fvmptelrn 6969 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
15 | cnmpt1plusg.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
16 | eqid 2738 | . . . . 5 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
17 | 4, 15, 16 | plusfval 18248 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
18 | 10, 14, 17 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
19 | 18 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵))) |
20 | 3, 16 | tmdcn 23142 | . . . 4 ⊢ (𝐺 ∈ TopMnd → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
21 | 2, 20 | syl 17 | . . 3 ⊢ (𝜑 → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 1, 7, 11, 21 | cnmpt12f 22725 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ (𝐾 Cn 𝐽)) |
23 | 19, 22 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 TopOpenctopn 17049 +𝑓cplusf 18238 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 TopMndctmd 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-topgen 17071 df-plusf 18240 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-tx 22621 df-tmd 23131 |
This theorem is referenced by: tmdmulg 23151 tmdgsum 23154 tmdlactcn 23161 clsnsg 23169 tgpt0 23178 cnmpt1mulr 23241 |
Copyright terms: Public domain | W3C validator |