![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1plusg | Structured version Visualization version GIF version |
Description: Continuity of the group sum; analogue of cnmpt12f 23695 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1plusg.p | ⊢ + = (+g‘𝐺) |
cnmpt1plusg.g | ⊢ (𝜑 → 𝐺 ∈ TopMnd) |
cnmpt1plusg.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt1plusg.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
cnmpt1plusg.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1plusg | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1plusg.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1plusg.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopMnd) | |
3 | tgpcn.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 3, 4 | tmdtopon 24110 | . . . . . . 7 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
6 | 2, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
7 | cnmpt1plusg.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
8 | cnf2 23278 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
9 | 1, 6, 7, 8 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
10 | 9 | fvmptelcdm 7147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
11 | cnmpt1plusg.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
12 | cnf2 23278 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
13 | 1, 6, 11, 12 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
14 | 13 | fvmptelcdm 7147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
15 | cnmpt1plusg.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
16 | eqid 2740 | . . . . 5 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
17 | 4, 15, 16 | plusfval 18685 | . . . 4 ⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
18 | 10, 14, 17 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
19 | 18 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵))) |
20 | 3, 16 | tmdcn 24112 | . . . 4 ⊢ (𝐺 ∈ TopMnd → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
21 | 2, 20 | syl 17 | . . 3 ⊢ (𝜑 → (+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 1, 7, 11, 21 | cnmpt12f 23695 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ (𝐾 Cn 𝐽)) |
23 | 19, 22 | eqeltrrd 2845 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝐾 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 TopOpenctopn 17481 +𝑓cplusf 18675 TopOnctopon 22937 Cn ccn 23253 ×t ctx 23589 TopMndctmd 24099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-topgen 17503 df-plusf 18677 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-tx 23591 df-tmd 24101 |
This theorem is referenced by: tmdmulg 24121 tmdgsum 24124 tmdlactcn 24131 clsnsg 24139 tgpt0 24148 cnmpt1mulr 24211 |
Copyright terms: Public domain | W3C validator |