MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptopon Structured version   Visualization version   GIF version

Theorem tgptopon 23233
Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tgptopon (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tgptopon
StepHypRef Expression
1 tgptps 23231 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 22083 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 217 1 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  TopOpenctopn 17132  TopOnctopon 22059  TopSpctps 22081  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-top 22043  df-topon 22060  df-topsp 22082  df-tmd 23223  df-tgp 23224
This theorem is referenced by:  tgpsubcn  23241  tgpmulg  23244  tgpmulg2  23245  subgtgp  23256  subgntr  23258  opnsubg  23259  clssubg  23260  clsnsg  23261  cldsubg  23262  tgpconncompeqg  23263  tgpconncomp  23264  tgpconncompss  23265  snclseqg  23267  tgphaus  23268  tgpt1  23269  tgpt0  23270  qustgpopn  23271  qustgplem  23272  qustgphaus  23274  prdstgpd  23276  tgptsmscld  23302  tsmsxplem1  23304  pl1cn  31905
  Copyright terms: Public domain W3C validator