MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptopon Structured version   Visualization version   GIF version

Theorem tgptopon 22397
Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tgptopon (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tgptopon
StepHypRef Expression
1 tgptps 22395 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 21249 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 210 1 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  cfv 6190  Basecbs 16342  TopOpenctopn 16554  TopOnctopon 21225  TopSpctps 21247  TopGrpctgp 22386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-iota 6154  df-fun 6192  df-fv 6198  df-ov 6981  df-top 21209  df-topon 21226  df-topsp 21248  df-tmd 22387  df-tgp 22388
This theorem is referenced by:  tgpsubcn  22405  tgpmulg  22408  tgpmulg2  22409  subgtgp  22420  subgntr  22421  opnsubg  22422  clssubg  22423  clsnsg  22424  cldsubg  22425  tgpconncompeqg  22426  tgpconncomp  22427  tgpconncompss  22428  snclseqg  22430  tgphaus  22431  tgpt1  22432  tgpt0  22433  qustgpopn  22434  qustgplem  22435  qustgphaus  22437  prdstgpd  22439  tgptsmscld  22465  tsmsxplem1  22467  pl1cn  30842
  Copyright terms: Public domain W3C validator