MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptopon Structured version   Visualization version   GIF version

Theorem tgptopon 24111
Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tgptopon (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tgptopon
StepHypRef Expression
1 tgptps 24109 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 22961 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 1 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  TopOpenctopn 17481  TopOnctopon 22937  TopSpctps 22959  TopGrpctgp 24100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-top 22921  df-topon 22938  df-topsp 22960  df-tmd 24101  df-tgp 24102
This theorem is referenced by:  tgpsubcn  24119  tgpmulg  24122  tgpmulg2  24123  subgtgp  24134  subgntr  24136  opnsubg  24137  clssubg  24138  clsnsg  24139  cldsubg  24140  tgpconncompeqg  24141  tgpconncomp  24142  tgpconncompss  24143  snclseqg  24145  tgphaus  24146  tgpt1  24147  tgpt0  24148  qustgpopn  24149  qustgplem  24150  qustgphaus  24152  prdstgpd  24154  tgptsmscld  24180  tsmsxplem1  24182  pl1cn  33901
  Copyright terms: Public domain W3C validator