| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptopon | Structured version Visualization version GIF version | ||
| Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgptopon | ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptps 23943 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22797 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Basecbs 17155 TopOpenctopn 17360 TopOnctopon 22773 TopSpctps 22795 TopGrpctgp 23934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-top 22757 df-topon 22774 df-topsp 22796 df-tmd 23935 df-tgp 23936 |
| This theorem is referenced by: tgpsubcn 23953 tgpmulg 23956 tgpmulg2 23957 subgtgp 23968 subgntr 23970 opnsubg 23971 clssubg 23972 clsnsg 23973 cldsubg 23974 tgpconncompeqg 23975 tgpconncomp 23976 tgpconncompss 23977 snclseqg 23979 tgphaus 23980 tgpt1 23981 tgpt0 23982 qustgpopn 23983 qustgplem 23984 qustgphaus 23986 prdstgpd 23988 tgptsmscld 24014 tsmsxplem1 24016 pl1cn 33918 |
| Copyright terms: Public domain | W3C validator |