MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptopon Structured version   Visualization version   GIF version

Theorem tgptopon 24002
Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tgptopon (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tgptopon
StepHypRef Expression
1 tgptps 24000 . 2 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 22854 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 1 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  Basecbs 17155  TopOpenctopn 17360  TopOnctopon 22830  TopSpctps 22852  TopGrpctgp 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-top 22814  df-topon 22831  df-topsp 22853  df-tmd 23992  df-tgp 23993
This theorem is referenced by:  tgpsubcn  24010  tgpmulg  24013  tgpmulg2  24014  subgtgp  24025  subgntr  24027  opnsubg  24028  clssubg  24029  clsnsg  24030  cldsubg  24031  tgpconncompeqg  24032  tgpconncomp  24033  tgpconncompss  24034  snclseqg  24036  tgphaus  24037  tgpt1  24038  tgpt0  24039  qustgpopn  24040  qustgplem  24041  qustgphaus  24043  prdstgpd  24045  tgptsmscld  24071  tsmsxplem1  24073  pl1cn  33938
  Copyright terms: Public domain W3C validator