| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptopon | Structured version Visualization version GIF version | ||
| Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgptopon | ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptps 24023 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22877 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 Basecbs 17233 TopOpenctopn 17440 TopOnctopon 22853 TopSpctps 22875 TopGrpctgp 24014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-top 22837 df-topon 22854 df-topsp 22876 df-tmd 24015 df-tgp 24016 |
| This theorem is referenced by: tgpsubcn 24033 tgpmulg 24036 tgpmulg2 24037 subgtgp 24048 subgntr 24050 opnsubg 24051 clssubg 24052 clsnsg 24053 cldsubg 24054 tgpconncompeqg 24055 tgpconncomp 24056 tgpconncompss 24057 snclseqg 24059 tgphaus 24060 tgpt1 24061 tgpt0 24062 qustgpopn 24063 qustgplem 24064 qustgphaus 24066 prdstgpd 24068 tgptsmscld 24094 tsmsxplem1 24096 pl1cn 33991 |
| Copyright terms: Public domain | W3C validator |