| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptopon | Structured version Visualization version GIF version | ||
| Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgptopon | ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptps 23967 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22821 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 TopOnctopon 22797 TopSpctps 22819 TopGrpctgp 23958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-top 22781 df-topon 22798 df-topsp 22820 df-tmd 23959 df-tgp 23960 |
| This theorem is referenced by: tgpsubcn 23977 tgpmulg 23980 tgpmulg2 23981 subgtgp 23992 subgntr 23994 opnsubg 23995 clssubg 23996 clsnsg 23997 cldsubg 23998 tgpconncompeqg 23999 tgpconncomp 24000 tgpconncompss 24001 snclseqg 24003 tgphaus 24004 tgpt1 24005 tgpt0 24006 qustgpopn 24007 qustgplem 24008 qustgphaus 24010 prdstgpd 24012 tgptsmscld 24038 tsmsxplem1 24040 pl1cn 33945 |
| Copyright terms: Public domain | W3C validator |