| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgptopon | Structured version Visualization version GIF version | ||
| Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| tgptopon | ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptps 23995 | . 2 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp) | |
| 2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 4 | 2, 3 | istps 22849 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 1, 4 | sylib 218 | 1 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 TopOpenctopn 17325 TopOnctopon 22825 TopSpctps 22847 TopGrpctgp 23986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-top 22809 df-topon 22826 df-topsp 22848 df-tmd 23987 df-tgp 23988 |
| This theorem is referenced by: tgpsubcn 24005 tgpmulg 24008 tgpmulg2 24009 subgtgp 24020 subgntr 24022 opnsubg 24023 clssubg 24024 clsnsg 24025 cldsubg 24026 tgpconncompeqg 24027 tgpconncomp 24028 tgpconncompss 24029 snclseqg 24031 tgphaus 24032 tgpt1 24033 tgpt0 24034 qustgpopn 24035 qustgplem 24036 qustgphaus 24038 prdstgpd 24040 tgptsmscld 24066 tsmsxplem1 24068 pl1cn 33968 |
| Copyright terms: Public domain | W3C validator |