MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptopon Structured version   Visualization version   GIF version

Theorem tgptopon 23585
Description: The topology of a topological group. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j ๐ฝ = (TopOpenโ€˜๐บ)
tgptopon.x ๐‘‹ = (Baseโ€˜๐บ)
Assertion
Ref Expression
tgptopon (๐บ โˆˆ TopGrp โ†’ ๐ฝ โˆˆ (TopOnโ€˜๐‘‹))

Proof of Theorem tgptopon
StepHypRef Expression
1 tgptps 23583 . 2 (๐บ โˆˆ TopGrp โ†’ ๐บ โˆˆ TopSp)
2 tgptopon.x . . 3 ๐‘‹ = (Baseโ€˜๐บ)
3 tgpcn.j . . 3 ๐ฝ = (TopOpenโ€˜๐บ)
42, 3istps 22435 . 2 (๐บ โˆˆ TopSp โ†” ๐ฝ โˆˆ (TopOnโ€˜๐‘‹))
51, 4sylib 217 1 (๐บ โˆˆ TopGrp โ†’ ๐ฝ โˆˆ (TopOnโ€˜๐‘‹))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1541   โˆˆ wcel 2106  โ€˜cfv 6543  Basecbs 17143  TopOpenctopn 17366  TopOnctopon 22411  TopSpctps 22433  TopGrpctgp 23574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-top 22395  df-topon 22412  df-topsp 22434  df-tmd 23575  df-tgp 23576
This theorem is referenced by:  tgpsubcn  23593  tgpmulg  23596  tgpmulg2  23597  subgtgp  23608  subgntr  23610  opnsubg  23611  clssubg  23612  clsnsg  23613  cldsubg  23614  tgpconncompeqg  23615  tgpconncomp  23616  tgpconncompss  23617  snclseqg  23619  tgphaus  23620  tgpt1  23621  tgpt0  23622  qustgpopn  23623  qustgplem  23624  qustgphaus  23626  prdstgpd  23628  tgptsmscld  23654  tsmsxplem1  23656  pl1cn  32930
  Copyright terms: Public domain W3C validator