MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2plusg Structured version   Visualization version   GIF version

Theorem cnmpt2plusg 22300
Description: Continuity of the group sum; analogue of cnmpt22f 21887 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2plusg.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2plusg.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2plusg.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2plusg (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2plusg.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 21803 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1plusg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
6 tgpcn.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝐺)
7 eqid 2778 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
86, 7tmdtopon 22293 . . . . . . . . . 10 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
95, 8syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
10 cnmpt2plusg.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
11 cnf2 21461 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
124, 9, 10, 11syl3anc 1439 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
13 eqid 2778 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1413fmpt2 7517 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
1512, 14sylibr 226 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1615r19.21bi 3114 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1716r19.21bi 3114 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
18173impa 1097 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
19 cnmpt2plusg.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
20 cnf2 21461 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
214, 9, 19, 20syl3anc 1439 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
22 eqid 2778 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2322fmpt2 7517 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
2421, 23sylibr 226 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2524r19.21bi 3114 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2625r19.21bi 3114 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
27263impa 1097 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
28 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
29 eqid 2778 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
307, 28, 29plusfval 17634 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3118, 27, 30syl2anc 579 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3231mpt2eq3dva 6996 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)))
336, 29tmdcn 22295 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
345, 33syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
351, 2, 10, 19, 34cnmpt22f 21887 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
3632, 35eqeltrrd 2860 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090   × cxp 5353  wf 6131  cfv 6135  (class class class)co 6922  cmpt2 6924  Basecbs 16255  +gcplusg 16338  TopOpenctopn 16468  +𝑓cplusf 17625  TopOnctopon 21122   Cn ccn 21436   ×t ctx 21772  TopMndctmd 22282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-map 8142  df-topgen 16490  df-plusf 17627  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cn 21439  df-tx 21774  df-tmd 22284
This theorem is referenced by:  tgpsubcn  22302  oppgtmd  22309  prdstmdd  22335  cnmpt2mulr  22394
  Copyright terms: Public domain W3C validator