Proof of Theorem cnmpt2plusg
| Step | Hyp | Ref
| Expression |
| 1 | | cnmpt1plusg.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
| 2 | | cnmpt2plusg.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
| 3 | | txtopon 23545 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | | cnmpt1plusg.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| 6 | | tgpcn.j |
. . . . . . . . . . 11
⊢ 𝐽 = (TopOpen‘𝐺) |
| 7 | | eqid 2734 |
. . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 8 | 6, 7 | tmdtopon 24035 |
. . . . . . . . . 10
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 9 | 5, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 10 | | cnmpt2plusg.a |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| 11 | | cnf2 23203 |
. . . . . . . . 9
⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 12 | 4, 9, 10, 11 | syl3anc 1372 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 13 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) |
| 14 | 13 | fmpo 8075 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 15 | 12, 14 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺)) |
| 16 | 15 | r19.21bi 3237 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺)) |
| 17 | 16 | r19.21bi 3237 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝐺)) |
| 18 | 17 | 3impa 1109 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝐺)) |
| 19 | | cnmpt2plusg.b |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| 20 | | cnf2 23203 |
. . . . . . . . 9
⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 21 | 4, 9, 19, 20 | syl3anc 1372 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 22 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) |
| 23 | 22 | fmpo 8075 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
| 24 | 21, 23 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺)) |
| 25 | 24 | r19.21bi 3237 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺)) |
| 26 | 25 | r19.21bi 3237 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝐺)) |
| 27 | 26 | 3impa 1109 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝐺)) |
| 28 | | cnmpt1plusg.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 29 | | eqid 2734 |
. . . . 5
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
| 30 | 7, 28, 29 | plusfval 18629 |
. . . 4
⊢ ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 31 | 18, 27, 30 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(+𝑓‘𝐺)𝐵) = (𝐴 + 𝐵)) |
| 32 | 31 | mpoeq3dva 7492 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(+𝑓‘𝐺)𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 + 𝐵))) |
| 33 | 6, 29 | tmdcn 24037 |
. . . 4
⊢ (𝐺 ∈ TopMnd →
(+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 34 | 5, 33 | syl 17 |
. . 3
⊢ (𝜑 →
(+𝑓‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 35 | 1, 2, 10, 19, 34 | cnmpt22f 23629 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(+𝑓‘𝐺)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
| 36 | 32, 35 | eqeltrrd 2834 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |