MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2plusg Structured version   Visualization version   GIF version

Theorem cnmpt2plusg 23239
Description: Continuity of the group sum; analogue of cnmpt22f 22826 which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
cnmpt1plusg.p + = (+g𝐺)
cnmpt1plusg.g (𝜑𝐺 ∈ TopMnd)
cnmpt1plusg.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2plusg.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2plusg.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2plusg.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2plusg (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2plusg
StepHypRef Expression
1 cnmpt1plusg.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2plusg.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 22742 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1plusg.g . . . . . . . . . 10 (𝜑𝐺 ∈ TopMnd)
6 tgpcn.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝐺)
7 eqid 2738 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
86, 7tmdtopon 23232 . . . . . . . . . 10 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
95, 8syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
10 cnmpt2plusg.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
11 cnf2 22400 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
124, 9, 10, 11syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
13 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1413fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
1512, 14sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1615r19.21bi 3134 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1716r19.21bi 3134 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
18173impa 1109 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
19 cnmpt2plusg.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
20 cnf2 22400 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
214, 9, 19, 20syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
22 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2322fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
2421, 23sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2524r19.21bi 3134 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2625r19.21bi 3134 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
27263impa 1109 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
28 cnmpt1plusg.p . . . . 5 + = (+g𝐺)
29 eqid 2738 . . . . 5 (+𝑓𝐺) = (+𝑓𝐺)
307, 28, 29plusfval 18333 . . . 4 ((𝐴 ∈ (Base‘𝐺) ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3118, 27, 30syl2anc 584 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(+𝑓𝐺)𝐵) = (𝐴 + 𝐵))
3231mpoeq3dva 7352 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)))
336, 29tmdcn 23234 . . . 4 (𝐺 ∈ TopMnd → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
345, 33syl 17 . . 3 (𝜑 → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
351, 2, 10, 19, 34cnmpt22f 22826 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(+𝑓𝐺)𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
3632, 35eqeltrrd 2840 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 + 𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  +gcplusg 16962  TopOpenctopn 17132  +𝑓cplusf 18323  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  TopMndctmd 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-plusf 18325  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-tx 22713  df-tmd 23223
This theorem is referenced by:  tgpsubcn  23241  oppgtmd  23248  prdstmdd  23275  cnmpt2mulr  23334
  Copyright terms: Public domain W3C validator