Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 31591
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 18222 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
6 mhmrcl1 18221 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2737 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2737 . . . . 5 (+𝑓𝑆) = (+𝑓𝑆)
108, 9mndplusf 18191 . . . 4 (𝑆 ∈ Mnd → (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆))
117, 10ax-mp 5 . . 3 (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)
12 eqid 2737 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2737 . . . . 5 (+𝑓𝑇) = (+𝑓𝑇)
1412, 13mndplusf 18191 . . . 4 (𝑇 ∈ Mnd → (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇))
153, 14ax-mp 5 . . 3 (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2737 . . . . 5 (TopOpen‘𝑆) = (TopOpen‘𝑆)
1817, 8tmdtopon 22978 . . . 4 (𝑆 ∈ TopMnd → (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆)))
1916, 18ax-mp 5 . . 3 (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆))
20 eqid 2737 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
2112, 20istps 21831 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇)))
224, 21mpbi 233 . . 3 (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇))
23 eqid 2737 . . . . . 6 (+g𝑆) = (+g𝑆)
24 eqid 2737 . . . . . 6 (+g𝑇) = (+g𝑇)
258, 23, 24mhmlin 18225 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
261, 25mp3an1 1450 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
278, 23, 9plusfval 18121 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓𝑆)𝑦) = (𝑥(+g𝑆)𝑦))
2827fveq2d 6721 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
298, 12mhmf 18223 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
301, 29ax-mp 5 . . . . . 6 𝐹:(Base‘𝑆)⟶(Base‘𝑇)
3130ffvelrni 6903 . . . . 5 (𝑥 ∈ (Base‘𝑆) → (𝐹𝑥) ∈ (Base‘𝑇))
3230ffvelrni 6903 . . . . 5 (𝑦 ∈ (Base‘𝑆) → (𝐹𝑦) ∈ (Base‘𝑇))
3312, 24, 13plusfval 18121 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3431, 32, 33syl2an 599 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3526, 28, 343eqtr4d 2787 . . 3 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)))
3617, 9tmdcn 22980 . . . 4 (𝑆 ∈ TopMnd → (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)))
3716, 36ax-mp 5 . . 3 (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))
385, 11, 15, 19, 22, 35, 37mndpluscn 31590 . 2 (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))
3913, 20istmd 22971 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))))
403, 4, 38, 39mpbir3an 1343 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110   × cxp 5549  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  TopOpenctopn 16926  +𝑓cplusf 18111  Mndcmnd 18173   MndHom cmhm 18216  TopOnctopon 21807  TopSpctps 21829   Cn ccn 22121   ×t ctx 22457  Homeochmeo 22650  TopMndctmd 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-map 8510  df-topgen 16948  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-tx 22459  df-hmeo 22652  df-tmd 22969
This theorem is referenced by:  xrge0tmd  31609
  Copyright terms: Public domain W3C validator