Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 33917
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 18715 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
6 mhmrcl1 18714 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2729 . . . . 5 (+𝑓𝑆) = (+𝑓𝑆)
108, 9mndplusf 18679 . . . 4 (𝑆 ∈ Mnd → (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆))
117, 10ax-mp 5 . . 3 (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)
12 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2729 . . . . 5 (+𝑓𝑇) = (+𝑓𝑇)
1412, 13mndplusf 18679 . . . 4 (𝑇 ∈ Mnd → (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇))
153, 14ax-mp 5 . . 3 (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2729 . . . . 5 (TopOpen‘𝑆) = (TopOpen‘𝑆)
1817, 8tmdtopon 23968 . . . 4 (𝑆 ∈ TopMnd → (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆)))
1916, 18ax-mp 5 . . 3 (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆))
20 eqid 2729 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
2112, 20istps 22821 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇)))
224, 21mpbi 230 . . 3 (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇))
23 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
24 eqid 2729 . . . . . 6 (+g𝑇) = (+g𝑇)
258, 23, 24mhmlin 18720 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
261, 25mp3an1 1450 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
278, 23, 9plusfval 18574 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓𝑆)𝑦) = (𝑥(+g𝑆)𝑦))
2827fveq2d 6862 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
298, 12mhmf 18716 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
301, 29ax-mp 5 . . . . . 6 𝐹:(Base‘𝑆)⟶(Base‘𝑇)
3130ffvelcdmi 7055 . . . . 5 (𝑥 ∈ (Base‘𝑆) → (𝐹𝑥) ∈ (Base‘𝑇))
3230ffvelcdmi 7055 . . . . 5 (𝑦 ∈ (Base‘𝑆) → (𝐹𝑦) ∈ (Base‘𝑇))
3312, 24, 13plusfval 18574 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3431, 32, 33syl2an 596 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3526, 28, 343eqtr4d 2774 . . 3 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)))
3617, 9tmdcn 23970 . . . 4 (𝑆 ∈ TopMnd → (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)))
3716, 36ax-mp 5 . . 3 (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))
385, 11, 15, 19, 22, 35, 37mndpluscn 33916 . 2 (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))
3913, 20istmd 23961 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))))
403, 4, 38, 39mpbir3an 1342 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  TopOpenctopn 17384  +𝑓cplusf 18564  Mndcmnd 18661   MndHom cmhm 18708  TopOnctopon 22797  TopSpctps 22819   Cn ccn 23111   ×t ctx 23447  Homeochmeo 23640  TopMndctmd 23957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-tx 23449  df-hmeo 23642  df-tmd 23959
This theorem is referenced by:  xrge0tmd  33935
  Copyright terms: Public domain W3C validator