Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 33961
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 18698 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
6 mhmrcl1 18697 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2733 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2733 . . . . 5 (+𝑓𝑆) = (+𝑓𝑆)
108, 9mndplusf 18662 . . . 4 (𝑆 ∈ Mnd → (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆))
117, 10ax-mp 5 . . 3 (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)
12 eqid 2733 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2733 . . . . 5 (+𝑓𝑇) = (+𝑓𝑇)
1412, 13mndplusf 18662 . . . 4 (𝑇 ∈ Mnd → (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇))
153, 14ax-mp 5 . . 3 (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2733 . . . . 5 (TopOpen‘𝑆) = (TopOpen‘𝑆)
1817, 8tmdtopon 23997 . . . 4 (𝑆 ∈ TopMnd → (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆)))
1916, 18ax-mp 5 . . 3 (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆))
20 eqid 2733 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
2112, 20istps 22850 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇)))
224, 21mpbi 230 . . 3 (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇))
23 eqid 2733 . . . . . 6 (+g𝑆) = (+g𝑆)
24 eqid 2733 . . . . . 6 (+g𝑇) = (+g𝑇)
258, 23, 24mhmlin 18703 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
261, 25mp3an1 1450 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
278, 23, 9plusfval 18557 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓𝑆)𝑦) = (𝑥(+g𝑆)𝑦))
2827fveq2d 6832 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
298, 12mhmf 18699 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
301, 29ax-mp 5 . . . . . 6 𝐹:(Base‘𝑆)⟶(Base‘𝑇)
3130ffvelcdmi 7022 . . . . 5 (𝑥 ∈ (Base‘𝑆) → (𝐹𝑥) ∈ (Base‘𝑇))
3230ffvelcdmi 7022 . . . . 5 (𝑦 ∈ (Base‘𝑆) → (𝐹𝑦) ∈ (Base‘𝑇))
3312, 24, 13plusfval 18557 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3431, 32, 33syl2an 596 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3526, 28, 343eqtr4d 2778 . . 3 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)))
3617, 9tmdcn 23999 . . . 4 (𝑆 ∈ TopMnd → (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)))
3716, 36ax-mp 5 . . 3 (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))
385, 11, 15, 19, 22, 35, 37mndpluscn 33960 . 2 (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))
3913, 20istmd 23990 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))))
403, 4, 38, 39mpbir3an 1342 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  TopOpenctopn 17327  +𝑓cplusf 18547  Mndcmnd 18644   MndHom cmhm 18691  TopOnctopon 22826  TopSpctps 22848   Cn ccn 23140   ×t ctx 23476  Homeochmeo 23669  TopMndctmd 23986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-topgen 17349  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-tx 23478  df-hmeo 23671  df-tmd 23988
This theorem is referenced by:  xrge0tmd  33979
  Copyright terms: Public domain W3C validator