| Step | Hyp | Ref
| Expression |
| 1 | | mhmhmeotmd.m |
. . 3
⊢ 𝐹 ∈ (𝑆 MndHom 𝑇) |
| 2 | | mhmrcl2 18721 |
. . 3
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ 𝑇 ∈ Mnd |
| 4 | | mhmhmeotmd.s |
. 2
⊢ 𝑇 ∈ TopSp |
| 5 | | mhmhmeotmd.h |
. . 3
⊢ 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇)) |
| 6 | | mhmrcl1 18720 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd) |
| 7 | 1, 6 | ax-mp 5 |
. . . 4
⊢ 𝑆 ∈ Mnd |
| 8 | | eqid 2730 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 9 | | eqid 2730 |
. . . . 5
⊢
(+𝑓‘𝑆) = (+𝑓‘𝑆) |
| 10 | 8, 9 | mndplusf 18685 |
. . . 4
⊢ (𝑆 ∈ Mnd →
(+𝑓‘𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)) |
| 11 | 7, 10 | ax-mp 5 |
. . 3
⊢
(+𝑓‘𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆) |
| 12 | | eqid 2730 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 13 | | eqid 2730 |
. . . . 5
⊢
(+𝑓‘𝑇) = (+𝑓‘𝑇) |
| 14 | 12, 13 | mndplusf 18685 |
. . . 4
⊢ (𝑇 ∈ Mnd →
(+𝑓‘𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)) |
| 15 | 3, 14 | ax-mp 5 |
. . 3
⊢
(+𝑓‘𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇) |
| 16 | | mhmhmeotmd.t |
. . . 4
⊢ 𝑆 ∈ TopMnd |
| 17 | | eqid 2730 |
. . . . 5
⊢
(TopOpen‘𝑆) =
(TopOpen‘𝑆) |
| 18 | 17, 8 | tmdtopon 23974 |
. . . 4
⊢ (𝑆 ∈ TopMnd →
(TopOpen‘𝑆) ∈
(TopOn‘(Base‘𝑆))) |
| 19 | 16, 18 | ax-mp 5 |
. . 3
⊢
(TopOpen‘𝑆)
∈ (TopOn‘(Base‘𝑆)) |
| 20 | | eqid 2730 |
. . . . 5
⊢
(TopOpen‘𝑇) =
(TopOpen‘𝑇) |
| 21 | 12, 20 | istps 22827 |
. . . 4
⊢ (𝑇 ∈ TopSp ↔
(TopOpen‘𝑇) ∈
(TopOn‘(Base‘𝑇))) |
| 22 | 4, 21 | mpbi 230 |
. . 3
⊢
(TopOpen‘𝑇)
∈ (TopOn‘(Base‘𝑇)) |
| 23 | | eqid 2730 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 24 | | eqid 2730 |
. . . . . 6
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 25 | 8, 23, 24 | mhmlin 18726 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 26 | 1, 25 | mp3an1 1450 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 27 | 8, 23, 9 | plusfval 18580 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓‘𝑆)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| 28 | 27 | fveq2d 6869 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓‘𝑆)𝑦)) = (𝐹‘(𝑥(+g‘𝑆)𝑦))) |
| 29 | 8, 12 | mhmf 18722 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 30 | 1, 29 | ax-mp 5 |
. . . . . 6
⊢ 𝐹:(Base‘𝑆)⟶(Base‘𝑇) |
| 31 | 30 | ffvelcdmi 7062 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝑆) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
| 32 | 30 | ffvelcdmi 7062 |
. . . . 5
⊢ (𝑦 ∈ (Base‘𝑆) → (𝐹‘𝑦) ∈ (Base‘𝑇)) |
| 33 | 12, 24, 13 | plusfval 18580 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐹‘𝑦) ∈ (Base‘𝑇)) → ((𝐹‘𝑥)(+𝑓‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 34 | 31, 32, 33 | syl2an 596 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘𝑥)(+𝑓‘𝑇)(𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 35 | 26, 28, 34 | 3eqtr4d 2775 |
. . 3
⊢ ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓‘𝑆)𝑦)) = ((𝐹‘𝑥)(+𝑓‘𝑇)(𝐹‘𝑦))) |
| 36 | 17, 9 | tmdcn 23976 |
. . . 4
⊢ (𝑆 ∈ TopMnd →
(+𝑓‘𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))) |
| 37 | 16, 36 | ax-mp 5 |
. . 3
⊢
(+𝑓‘𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)) |
| 38 | 5, 11, 15, 19, 22, 35, 37 | mndpluscn 33924 |
. 2
⊢
(+𝑓‘𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇)) |
| 39 | 13, 20 | istmd 23967 |
. 2
⊢ (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧
(+𝑓‘𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇)))) |
| 40 | 3, 4, 38, 39 | mpbir3an 1342 |
1
⊢ 𝑇 ∈ TopMnd |