Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 33396
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpenβ€˜π‘†)Homeo(TopOpenβ€˜π‘‡))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 18708 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) β†’ 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpenβ€˜π‘†)Homeo(TopOpenβ€˜π‘‡))
6 mhmrcl1 18707 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) β†’ 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2724 . . . . 5 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
9 eqid 2724 . . . . 5 (+π‘“β€˜π‘†) = (+π‘“β€˜π‘†)
108, 9mndplusf 18675 . . . 4 (𝑆 ∈ Mnd β†’ (+π‘“β€˜π‘†):((Baseβ€˜π‘†) Γ— (Baseβ€˜π‘†))⟢(Baseβ€˜π‘†))
117, 10ax-mp 5 . . 3 (+π‘“β€˜π‘†):((Baseβ€˜π‘†) Γ— (Baseβ€˜π‘†))⟢(Baseβ€˜π‘†)
12 eqid 2724 . . . . 5 (Baseβ€˜π‘‡) = (Baseβ€˜π‘‡)
13 eqid 2724 . . . . 5 (+π‘“β€˜π‘‡) = (+π‘“β€˜π‘‡)
1412, 13mndplusf 18675 . . . 4 (𝑇 ∈ Mnd β†’ (+π‘“β€˜π‘‡):((Baseβ€˜π‘‡) Γ— (Baseβ€˜π‘‡))⟢(Baseβ€˜π‘‡))
153, 14ax-mp 5 . . 3 (+π‘“β€˜π‘‡):((Baseβ€˜π‘‡) Γ— (Baseβ€˜π‘‡))⟢(Baseβ€˜π‘‡)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2724 . . . . 5 (TopOpenβ€˜π‘†) = (TopOpenβ€˜π‘†)
1817, 8tmdtopon 23907 . . . 4 (𝑆 ∈ TopMnd β†’ (TopOpenβ€˜π‘†) ∈ (TopOnβ€˜(Baseβ€˜π‘†)))
1916, 18ax-mp 5 . . 3 (TopOpenβ€˜π‘†) ∈ (TopOnβ€˜(Baseβ€˜π‘†))
20 eqid 2724 . . . . 5 (TopOpenβ€˜π‘‡) = (TopOpenβ€˜π‘‡)
2112, 20istps 22758 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpenβ€˜π‘‡) ∈ (TopOnβ€˜(Baseβ€˜π‘‡)))
224, 21mpbi 229 . . 3 (TopOpenβ€˜π‘‡) ∈ (TopOnβ€˜(Baseβ€˜π‘‡))
23 eqid 2724 . . . . . 6 (+gβ€˜π‘†) = (+gβ€˜π‘†)
24 eqid 2724 . . . . . 6 (+gβ€˜π‘‡) = (+gβ€˜π‘‡)
258, 23, 24mhmlin 18713 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ (πΉβ€˜(π‘₯(+gβ€˜π‘†)𝑦)) = ((πΉβ€˜π‘₯)(+gβ€˜π‘‡)(πΉβ€˜π‘¦)))
261, 25mp3an1 1444 . . . 4 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ (πΉβ€˜(π‘₯(+gβ€˜π‘†)𝑦)) = ((πΉβ€˜π‘₯)(+gβ€˜π‘‡)(πΉβ€˜π‘¦)))
278, 23, 9plusfval 18570 . . . . 5 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ (π‘₯(+π‘“β€˜π‘†)𝑦) = (π‘₯(+gβ€˜π‘†)𝑦))
2827fveq2d 6885 . . . 4 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ (πΉβ€˜(π‘₯(+π‘“β€˜π‘†)𝑦)) = (πΉβ€˜(π‘₯(+gβ€˜π‘†)𝑦)))
298, 12mhmf 18709 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) β†’ 𝐹:(Baseβ€˜π‘†)⟢(Baseβ€˜π‘‡))
301, 29ax-mp 5 . . . . . 6 𝐹:(Baseβ€˜π‘†)⟢(Baseβ€˜π‘‡)
3130ffvelcdmi 7075 . . . . 5 (π‘₯ ∈ (Baseβ€˜π‘†) β†’ (πΉβ€˜π‘₯) ∈ (Baseβ€˜π‘‡))
3230ffvelcdmi 7075 . . . . 5 (𝑦 ∈ (Baseβ€˜π‘†) β†’ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘‡))
3312, 24, 13plusfval 18570 . . . . 5 (((πΉβ€˜π‘₯) ∈ (Baseβ€˜π‘‡) ∧ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘‡)) β†’ ((πΉβ€˜π‘₯)(+π‘“β€˜π‘‡)(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(+gβ€˜π‘‡)(πΉβ€˜π‘¦)))
3431, 32, 33syl2an 595 . . . 4 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ ((πΉβ€˜π‘₯)(+π‘“β€˜π‘‡)(πΉβ€˜π‘¦)) = ((πΉβ€˜π‘₯)(+gβ€˜π‘‡)(πΉβ€˜π‘¦)))
3526, 28, 343eqtr4d 2774 . . 3 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (Baseβ€˜π‘†)) β†’ (πΉβ€˜(π‘₯(+π‘“β€˜π‘†)𝑦)) = ((πΉβ€˜π‘₯)(+π‘“β€˜π‘‡)(πΉβ€˜π‘¦)))
3617, 9tmdcn 23909 . . . 4 (𝑆 ∈ TopMnd β†’ (+π‘“β€˜π‘†) ∈ (((TopOpenβ€˜π‘†) Γ—t (TopOpenβ€˜π‘†)) Cn (TopOpenβ€˜π‘†)))
3716, 36ax-mp 5 . . 3 (+π‘“β€˜π‘†) ∈ (((TopOpenβ€˜π‘†) Γ—t (TopOpenβ€˜π‘†)) Cn (TopOpenβ€˜π‘†))
385, 11, 15, 19, 22, 35, 37mndpluscn 33395 . 2 (+π‘“β€˜π‘‡) ∈ (((TopOpenβ€˜π‘‡) Γ—t (TopOpenβ€˜π‘‡)) Cn (TopOpenβ€˜π‘‡))
3913, 20istmd 23900 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+π‘“β€˜π‘‡) ∈ (((TopOpenβ€˜π‘‡) Γ—t (TopOpenβ€˜π‘‡)) Cn (TopOpenβ€˜π‘‡))))
403, 4, 38, 39mpbir3an 1338 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   = wceq 1533   ∈ wcel 2098   Γ— cxp 5664  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  TopOpenctopn 17366  +𝑓cplusf 18560  Mndcmnd 18657   MndHom cmhm 18701  TopOnctopon 22734  TopSpctps 22756   Cn ccn 23050   Γ—t ctx 23386  Homeochmeo 23579  TopMndctmd 23896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8818  df-topgen 17388  df-plusf 18562  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cn 23053  df-tx 23388  df-hmeo 23581  df-tmd 23898
This theorem is referenced by:  xrge0tmd  33414
  Copyright terms: Public domain W3C validator