Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 31877
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 18434 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
6 mhmrcl1 18433 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2738 . . . . 5 (+𝑓𝑆) = (+𝑓𝑆)
108, 9mndplusf 18403 . . . 4 (𝑆 ∈ Mnd → (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆))
117, 10ax-mp 5 . . 3 (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)
12 eqid 2738 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2738 . . . . 5 (+𝑓𝑇) = (+𝑓𝑇)
1412, 13mndplusf 18403 . . . 4 (𝑇 ∈ Mnd → (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇))
153, 14ax-mp 5 . . 3 (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2738 . . . . 5 (TopOpen‘𝑆) = (TopOpen‘𝑆)
1817, 8tmdtopon 23232 . . . 4 (𝑆 ∈ TopMnd → (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆)))
1916, 18ax-mp 5 . . 3 (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆))
20 eqid 2738 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
2112, 20istps 22083 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇)))
224, 21mpbi 229 . . 3 (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇))
23 eqid 2738 . . . . . 6 (+g𝑆) = (+g𝑆)
24 eqid 2738 . . . . . 6 (+g𝑇) = (+g𝑇)
258, 23, 24mhmlin 18437 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
261, 25mp3an1 1447 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
278, 23, 9plusfval 18333 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓𝑆)𝑦) = (𝑥(+g𝑆)𝑦))
2827fveq2d 6778 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
298, 12mhmf 18435 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
301, 29ax-mp 5 . . . . . 6 𝐹:(Base‘𝑆)⟶(Base‘𝑇)
3130ffvelrni 6960 . . . . 5 (𝑥 ∈ (Base‘𝑆) → (𝐹𝑥) ∈ (Base‘𝑇))
3230ffvelrni 6960 . . . . 5 (𝑦 ∈ (Base‘𝑆) → (𝐹𝑦) ∈ (Base‘𝑇))
3312, 24, 13plusfval 18333 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3431, 32, 33syl2an 596 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3526, 28, 343eqtr4d 2788 . . 3 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)))
3617, 9tmdcn 23234 . . . 4 (𝑆 ∈ TopMnd → (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)))
3716, 36ax-mp 5 . . 3 (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))
385, 11, 15, 19, 22, 35, 37mndpluscn 31876 . 2 (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))
3913, 20istmd 23225 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))))
403, 4, 38, 39mpbir3an 1340 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  TopOpenctopn 17132  +𝑓cplusf 18323  Mndcmnd 18385   MndHom cmhm 18428  TopOnctopon 22059  TopSpctps 22081   Cn ccn 22375   ×t ctx 22711  Homeochmeo 22904  TopMndctmd 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-tx 22713  df-hmeo 22906  df-tmd 23223
This theorem is referenced by:  xrge0tmd  31895
  Copyright terms: Public domain W3C validator