![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdmnd | Structured version Visualization version GIF version |
Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tmdmnd | ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
2 | eqid 2725 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
3 | 1, 2 | istmd 24022 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
4 | 3 | simp1bi 1142 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 TopOpenctopn 17406 +𝑓cplusf 18600 Mndcmnd 18697 TopSpctps 22878 Cn ccn 23172 ×t ctx 23508 TopMndctmd 24018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-tmd 24020 |
This theorem is referenced by: tmdmulg 24040 tmdgsum 24043 oppgtmd 24045 prdstmdd 24072 tsmsxp 24103 xrge0iifmhm 33671 esumcst 33813 |
Copyright terms: Public domain | W3C validator |