MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmnd Structured version   Visualization version   GIF version

Theorem tmdmnd 24099
Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdmnd (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)

Proof of Theorem tmdmnd
StepHypRef Expression
1 eqid 2735 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2735 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 24098 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp1bi 1144 1 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6563  (class class class)co 7431  TopOpenctopn 17468  +𝑓cplusf 18663  Mndcmnd 18760  TopSpctps 22954   Cn ccn 23248   ×t ctx 23584  TopMndctmd 24094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-tmd 24096
This theorem is referenced by:  tmdmulg  24116  tmdgsum  24119  oppgtmd  24121  prdstmdd  24148  tsmsxp  24179  xrge0iifmhm  33900  esumcst  34044
  Copyright terms: Public domain W3C validator