MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmnd Structured version   Visualization version   GIF version

Theorem tmdmnd 24013
Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdmnd (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)

Proof of Theorem tmdmnd
StepHypRef Expression
1 eqid 2735 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2735 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 24012 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp1bi 1145 1 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6531  (class class class)co 7405  TopOpenctopn 17435  +𝑓cplusf 18615  Mndcmnd 18712  TopSpctps 22870   Cn ccn 23162   ×t ctx 23498  TopMndctmd 24008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-tmd 24010
This theorem is referenced by:  tmdmulg  24030  tmdgsum  24033  oppgtmd  24035  prdstmdd  24062  tsmsxp  24093  xrge0iifmhm  33970  esumcst  34094
  Copyright terms: Public domain W3C validator