MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmnd Structured version   Visualization version   GIF version

Theorem tmdmnd 24083
Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Assertion
Ref Expression
tmdmnd (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)

Proof of Theorem tmdmnd
StepHypRef Expression
1 eqid 2737 . . 3 (+𝑓𝐺) = (+𝑓𝐺)
2 eqid 2737 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
31, 2istmd 24082 . 2 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
43simp1bi 1146 1 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6561  (class class class)co 7431  TopOpenctopn 17466  +𝑓cplusf 18650  Mndcmnd 18747  TopSpctps 22938   Cn ccn 23232   ×t ctx 23568  TopMndctmd 24078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-tmd 24080
This theorem is referenced by:  tmdmulg  24100  tmdgsum  24103  oppgtmd  24105  prdstmdd  24132  tsmsxp  24163  xrge0iifmhm  33938  esumcst  34064
  Copyright terms: Public domain W3C validator