| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmdmnd | Structured version Visualization version GIF version | ||
| Description: A topological monoid is a monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmdmnd | ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (+𝑓‘𝐺) = (+𝑓‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
| 3 | 1, 2 | istmd 23984 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 TopOpenctopn 17320 +𝑓cplusf 18540 Mndcmnd 18637 TopSpctps 22842 Cn ccn 23134 ×t ctx 23470 TopMndctmd 23980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-tmd 23982 |
| This theorem is referenced by: tmdmulg 24002 tmdgsum 24005 oppgtmd 24007 prdstmdd 24034 tsmsxp 24065 xrge0iifmhm 33944 esumcst 34068 |
| Copyright terms: Public domain | W3C validator |