Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifmhm Structured version   Visualization version   GIF version

Theorem xrge0iifmhm 33929
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifmhm 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
21iistmd 33892 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
3 tmdmnd 23962 . . . 4 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd)
42, 3ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd
5 xrge0cmn 21325 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
6 cmnmnd 19727 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
75, 6ax-mp 5 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
84, 7pm3.2i 470 . 2 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
9 xrge0iifhmeo.1 . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
109xrge0iifcnv 33923 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
1110simpli 483 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
12 f1of 6800 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
1311, 12ax-mp 5 . . 3 𝐹:(0[,]1)⟶(0[,]+∞)
14 xrge0iifhmeo.k . . . . 5 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
159, 14xrge0iifhom 33927 . . . 4 ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)))
1615rgen2 3177 . . 3 𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧))
179, 14xrge0iif1 33928 . . 3 (𝐹‘1) = 0
1813, 16, 173pm3.2i 1340 . 2 (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)
19 unitsscn 13461 . . . 4 (0[,]1) ⊆ ℂ
20 eqid 2729 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 21268 . . . . . 6 ℂ = (Base‘ℂfld)
2220, 21mgpbas 20054 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
231, 22ressbas2 17208 . . . 4 ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))))
2419, 23ax-mp 5 . . 3 (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))
25 xrge0base 32952 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
26 cnfldex 21267 . . . . 5 fld ∈ V
27 ovex 7420 . . . . 5 (0[,]1) ∈ V
28 eqid 2729 . . . . . 6 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
2928, 20mgpress 20059 . . . . 5 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
3026, 27, 29mp2an 692 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
31 cnfldmul 21272 . . . . . 6 · = (.r‘ℂfld)
3228, 31ressmulr 17270 . . . . 5 ((0[,]1) ∈ V → · = (.r‘(ℂflds (0[,]1))))
3327, 32ax-mp 5 . . . 4 · = (.r‘(ℂflds (0[,]1)))
3430, 33mgpplusg 20053 . . 3 · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
35 xrge0plusg 32954 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
36 cnring 21302 . . . 4 fld ∈ Ring
37 1elunit 13431 . . . 4 1 ∈ (0[,]1)
38 cnfld1 21305 . . . . 5 1 = (1r‘ℂfld)
391, 21, 38ringidss 20186 . . . 4 ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))))
4036, 19, 37, 39mp3an 1463 . . 3 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
41 xrge00 32953 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4224, 25, 34, 35, 40, 41ismhm 18712 . 2 (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)))
438, 18, 42mpbir2an 711 1 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  ifcif 4488  cmpt 5188  ccnv 5637  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  +∞cpnf 11205  cle 11209  -cneg 11406   +𝑒 cxad 13070  [,]cicc 13309  expce 16027  Basecbs 17179  s cress 17200  .rcmulr 17221  t crest 17383  0gc0g 17402  ordTopcordt 17462  *𝑠cxrs 17463  Mndcmnd 18661   MndHom cmhm 18708  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  fldccnfld 21264  TopMndctmd 23957  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-plusf 18566  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-abv 20718  df-lmod 20768  df-scaf 20769  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-tmd 23959  df-tgp 23960  df-trg 24047  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-nrg 24473  df-nlm 24474  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  xrge0tmd  33935
  Copyright terms: Public domain W3C validator