Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifmhm Structured version   Visualization version   GIF version

Theorem xrge0iifmhm 33900
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifmhm 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
21iistmd 33863 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
3 tmdmnd 24099 . . . 4 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd)
42, 3ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd
5 xrge0cmn 21444 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
6 cmnmnd 19830 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
75, 6ax-mp 5 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
84, 7pm3.2i 470 . 2 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
9 xrge0iifhmeo.1 . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
109xrge0iifcnv 33894 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
1110simpli 483 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
12 f1of 6849 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
1311, 12ax-mp 5 . . 3 𝐹:(0[,]1)⟶(0[,]+∞)
14 xrge0iifhmeo.k . . . . 5 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
159, 14xrge0iifhom 33898 . . . 4 ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)))
1615rgen2 3197 . . 3 𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧))
179, 14xrge0iif1 33899 . . 3 (𝐹‘1) = 0
1813, 16, 173pm3.2i 1338 . 2 (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)
19 unitsscn 13537 . . . 4 (0[,]1) ⊆ ℂ
20 eqid 2735 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 21386 . . . . . 6 ℂ = (Base‘ℂfld)
2220, 21mgpbas 20158 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
231, 22ressbas2 17283 . . . 4 ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))))
2419, 23ax-mp 5 . . 3 (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))
25 xrge0base 32999 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
26 cnfldex 21385 . . . . 5 fld ∈ V
27 ovex 7464 . . . . 5 (0[,]1) ∈ V
28 eqid 2735 . . . . . 6 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
2928, 20mgpress 20167 . . . . 5 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
3026, 27, 29mp2an 692 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
31 cnfldmul 21390 . . . . . 6 · = (.r‘ℂfld)
3228, 31ressmulr 17353 . . . . 5 ((0[,]1) ∈ V → · = (.r‘(ℂflds (0[,]1))))
3327, 32ax-mp 5 . . . 4 · = (.r‘(ℂflds (0[,]1)))
3430, 33mgpplusg 20156 . . 3 · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
35 xrge0plusg 33001 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
36 cnring 21421 . . . 4 fld ∈ Ring
37 1elunit 13507 . . . 4 1 ∈ (0[,]1)
38 cnfld1 21424 . . . . 5 1 = (1r‘ℂfld)
391, 21, 38ringidss 20291 . . . 4 ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))))
4036, 19, 37, 39mp3an 1460 . . 3 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
41 xrge00 33000 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4224, 25, 34, 35, 40, 41ismhm 18811 . 2 (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)))
438, 18, 42mpbir2an 711 1 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  ifcif 4531  cmpt 5231  ccnv 5688  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158  +∞cpnf 11290  cle 11294  -cneg 11491   +𝑒 cxad 13150  [,]cicc 13387  expce 16094  Basecbs 17245  s cress 17274  .rcmulr 17299  t crest 17467  0gc0g 17486  ordTopcordt 17546  *𝑠cxrs 17547  Mndcmnd 18760   MndHom cmhm 18807  CMndccmn 19813  mulGrpcmgp 20152  Ringcrg 20251  fldccnfld 21382  TopMndctmd 24094  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-abv 20827  df-lmod 20877  df-scaf 20878  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tmd 24096  df-tgp 24097  df-trg 24184  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-nrg 24614  df-nlm 24615  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  xrge0tmd  33906
  Copyright terms: Public domain W3C validator