Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifmhm | Structured version Visualization version GIF version |
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
xrge0iifhmeo.k | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0iifmhm | ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
2 | 1 | iistmd 31754 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd |
3 | tmdmnd 23134 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd |
5 | xrge0cmn 20552 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
6 | cmnmnd 19317 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
8 | 4, 7 | pm3.2i 470 | . 2 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
9 | xrge0iifhmeo.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
10 | 9 | xrge0iifcnv 31785 | . . . . 5 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
11 | 10 | simpli 483 | . . . 4 ⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
12 | f1of 6700 | . . . 4 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
14 | xrge0iifhmeo.k | . . . . 5 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
15 | 9, 14 | xrge0iifhom 31789 | . . . 4 ⊢ ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧))) |
16 | 15 | rgen2 3126 | . . 3 ⊢ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) |
17 | 9, 14 | xrge0iif1 31790 | . . 3 ⊢ (𝐹‘1) = 0 |
18 | 13, 16, 17 | 3pm3.2i 1337 | . 2 ⊢ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0) |
19 | unitsscn 13161 | . . . 4 ⊢ (0[,]1) ⊆ ℂ | |
20 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 20514 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 19641 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 1, 22 | ressbas2 16875 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
24 | 19, 23 | ax-mp 5 | . . 3 ⊢ (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
25 | xrge0base 31196 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
26 | cnfldex 20513 | . . . . 5 ⊢ ℂfld ∈ V | |
27 | ovex 7288 | . . . . 5 ⊢ (0[,]1) ∈ V | |
28 | eqid 2738 | . . . . . 6 ⊢ (ℂfld ↾s (0[,]1)) = (ℂfld ↾s (0[,]1)) | |
29 | 28, 20 | mgpress 19650 | . . . . 5 ⊢ ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1)))) |
30 | 26, 27, 29 | mp2an 688 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1))) |
31 | cnfldmul 20516 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
32 | 28, 31 | ressmulr 16943 | . . . . 5 ⊢ ((0[,]1) ∈ V → · = (.r‘(ℂfld ↾s (0[,]1)))) |
33 | 27, 32 | ax-mp 5 | . . . 4 ⊢ · = (.r‘(ℂfld ↾s (0[,]1))) |
34 | 30, 33 | mgpplusg 19639 | . . 3 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
35 | xrge0plusg 31198 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
36 | cnring 20532 | . . . 4 ⊢ ℂfld ∈ Ring | |
37 | 1elunit 13131 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
38 | cnfld1 20535 | . . . . 5 ⊢ 1 = (1r‘ℂfld) | |
39 | 1, 21, 38 | ringidss 19731 | . . . 4 ⊢ ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
40 | 36, 19, 37, 39 | mp3an 1459 | . . 3 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
41 | xrge00 31197 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
42 | 24, 25, 34, 35, 40, 41 | ismhm 18347 | . 2 ⊢ (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0))) |
43 | 8, 18, 42 | mpbir2an 707 | 1 ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ifcif 4456 ↦ cmpt 5153 ◡ccnv 5579 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 +∞cpnf 10937 ≤ cle 10941 -cneg 11136 +𝑒 cxad 12775 [,]cicc 13011 expce 15699 Basecbs 16840 ↾s cress 16867 .rcmulr 16889 ↾t crest 17048 0gc0g 17067 ordTopcordt 17127 ℝ*𝑠cxrs 17128 Mndcmnd 18300 MndHom cmhm 18343 CMndccmn 19301 mulGrpcmgp 19635 Ringcrg 19698 ℂfldccnfld 20510 TopMndctmd 23129 logclog 25615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-abv 19992 df-lmod 20040 df-scaf 20041 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tmd 23131 df-tgp 23132 df-trg 23219 df-xms 23381 df-ms 23382 df-tms 23383 df-nm 23644 df-ngp 23645 df-nrg 23647 df-nlm 23648 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 |
This theorem is referenced by: xrge0tmd 31797 |
Copyright terms: Public domain | W3C validator |