![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifmhm | Structured version Visualization version GIF version |
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
xrge0iifhmeo.k | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0iifmhm | ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
2 | 1 | iistmd 33848 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd |
3 | tmdmnd 24104 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd |
5 | xrge0cmn 21449 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
6 | cmnmnd 19839 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
8 | 4, 7 | pm3.2i 470 | . 2 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
9 | xrge0iifhmeo.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
10 | 9 | xrge0iifcnv 33879 | . . . . 5 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
11 | 10 | simpli 483 | . . . 4 ⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
12 | f1of 6862 | . . . 4 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
14 | xrge0iifhmeo.k | . . . . 5 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
15 | 9, 14 | xrge0iifhom 33883 | . . . 4 ⊢ ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧))) |
16 | 15 | rgen2 3205 | . . 3 ⊢ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) |
17 | 9, 14 | xrge0iif1 33884 | . . 3 ⊢ (𝐹‘1) = 0 |
18 | 13, 16, 17 | 3pm3.2i 1339 | . 2 ⊢ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0) |
19 | unitsscn 13560 | . . . 4 ⊢ (0[,]1) ⊆ ℂ | |
20 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 21391 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 20167 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 1, 22 | ressbas2 17296 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
24 | 19, 23 | ax-mp 5 | . . 3 ⊢ (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
25 | xrge0base 32997 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
26 | cnfldex 21390 | . . . . 5 ⊢ ℂfld ∈ V | |
27 | ovex 7481 | . . . . 5 ⊢ (0[,]1) ∈ V | |
28 | eqid 2740 | . . . . . 6 ⊢ (ℂfld ↾s (0[,]1)) = (ℂfld ↾s (0[,]1)) | |
29 | 28, 20 | mgpress 20176 | . . . . 5 ⊢ ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1)))) |
30 | 26, 27, 29 | mp2an 691 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1))) |
31 | cnfldmul 21395 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
32 | 28, 31 | ressmulr 17366 | . . . . 5 ⊢ ((0[,]1) ∈ V → · = (.r‘(ℂfld ↾s (0[,]1)))) |
33 | 27, 32 | ax-mp 5 | . . . 4 ⊢ · = (.r‘(ℂfld ↾s (0[,]1))) |
34 | 30, 33 | mgpplusg 20165 | . . 3 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
35 | xrge0plusg 32999 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
36 | cnring 21426 | . . . 4 ⊢ ℂfld ∈ Ring | |
37 | 1elunit 13530 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
38 | cnfld1 21429 | . . . . 5 ⊢ 1 = (1r‘ℂfld) | |
39 | 1, 21, 38 | ringidss 20300 | . . . 4 ⊢ ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
40 | 36, 19, 37, 39 | mp3an 1461 | . . 3 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
41 | xrge00 32998 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
42 | 24, 25, 34, 35, 40, 41 | ismhm 18820 | . 2 ⊢ (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0))) |
43 | 8, 18, 42 | mpbir2an 710 | 1 ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ifcif 4548 ↦ cmpt 5249 ◡ccnv 5699 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 +∞cpnf 11321 ≤ cle 11325 -cneg 11521 +𝑒 cxad 13173 [,]cicc 13410 expce 16109 Basecbs 17258 ↾s cress 17287 .rcmulr 17312 ↾t crest 17480 0gc0g 17499 ordTopcordt 17559 ℝ*𝑠cxrs 17560 Mndcmnd 18772 MndHom cmhm 18816 CMndccmn 19822 mulGrpcmgp 20161 Ringcrg 20260 ℂfldccnfld 21387 TopMndctmd 24099 logclog 26614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-plusf 18677 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20597 df-abv 20832 df-lmod 20882 df-scaf 20883 df-sra 21195 df-rgmod 21196 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tmd 24101 df-tgp 24102 df-trg 24189 df-xms 24351 df-ms 24352 df-tms 24353 df-nm 24616 df-ngp 24617 df-nrg 24619 df-nlm 24620 df-cncf 24923 df-limc 25921 df-dv 25922 df-log 26616 |
This theorem is referenced by: xrge0tmd 33891 |
Copyright terms: Public domain | W3C validator |