Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0iifmhm | Structured version Visualization version GIF version |
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
Ref | Expression |
---|---|
xrge0iifhmeo.1 | ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) |
xrge0iifhmeo.k | ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0iifmhm | ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . . 5 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1)) | |
2 | 1 | iistmd 31373 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd |
3 | tmdmnd 22775 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd |
5 | xrge0cmn 20208 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
6 | cmnmnd 18989 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
8 | 4, 7 | pm3.2i 474 | . 2 ⊢ (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
9 | xrge0iifhmeo.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) | |
10 | 9 | xrge0iifcnv 31404 | . . . . 5 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) |
11 | 10 | simpli 487 | . . . 4 ⊢ 𝐹:(0[,]1)–1-1-onto→(0[,]+∞) |
12 | f1of 6602 | . . . 4 ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ 𝐹:(0[,]1)⟶(0[,]+∞) |
14 | xrge0iifhmeo.k | . . . . 5 ⊢ 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
15 | 9, 14 | xrge0iifhom 31408 | . . . 4 ⊢ ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧))) |
16 | 15 | rgen2 3132 | . . 3 ⊢ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) |
17 | 9, 14 | xrge0iif1 31409 | . . 3 ⊢ (𝐹‘1) = 0 |
18 | 13, 16, 17 | 3pm3.2i 1336 | . 2 ⊢ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0) |
19 | unitsscn 12932 | . . . 4 ⊢ (0[,]1) ⊆ ℂ | |
20 | eqid 2758 | . . . . . 6 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
21 | cnfldbas 20170 | . . . . . 6 ⊢ ℂ = (Base‘ℂfld) | |
22 | 20, 21 | mgpbas 19313 | . . . . 5 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
23 | 1, 22 | ressbas2 16613 | . . . 4 ⊢ ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
24 | 19, 23 | ax-mp 5 | . . 3 ⊢ (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
25 | xrge0base 30820 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
26 | cnfldex 20169 | . . . . 5 ⊢ ℂfld ∈ V | |
27 | ovex 7183 | . . . . 5 ⊢ (0[,]1) ∈ V | |
28 | eqid 2758 | . . . . . 6 ⊢ (ℂfld ↾s (0[,]1)) = (ℂfld ↾s (0[,]1)) | |
29 | 28, 20 | mgpress 19318 | . . . . 5 ⊢ ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1)))) |
30 | 26, 27, 29 | mp2an 691 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂfld ↾s (0[,]1))) |
31 | cnfldmul 20172 | . . . . . 6 ⊢ · = (.r‘ℂfld) | |
32 | 28, 31 | ressmulr 16683 | . . . . 5 ⊢ ((0[,]1) ∈ V → · = (.r‘(ℂfld ↾s (0[,]1)))) |
33 | 27, 32 | ax-mp 5 | . . . 4 ⊢ · = (.r‘(ℂfld ↾s (0[,]1))) |
34 | 30, 33 | mgpplusg 19311 | . . 3 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
35 | xrge0plusg 30822 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
36 | cnring 20188 | . . . 4 ⊢ ℂfld ∈ Ring | |
37 | 1elunit 12902 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
38 | cnfld1 20191 | . . . . 5 ⊢ 1 = (1r‘ℂfld) | |
39 | 1, 21, 38 | ringidss 19398 | . . . 4 ⊢ ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))) |
40 | 36, 19, 37, 39 | mp3an 1458 | . . 3 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))) |
41 | xrge00 30821 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
42 | 24, 25, 34, 35, 40, 41 | ismhm 18024 | . 2 ⊢ (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) +𝑒 (𝐹‘𝑧)) ∧ (𝐹‘1) = 0))) |
43 | 8, 18, 42 | mpbir2an 710 | 1 ⊢ 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ⊆ wss 3858 ifcif 4420 ↦ cmpt 5112 ◡ccnv 5523 ⟶wf 6331 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 · cmul 10580 +∞cpnf 10710 ≤ cle 10714 -cneg 10909 +𝑒 cxad 12546 [,]cicc 12782 expce 15463 Basecbs 16541 ↾s cress 16542 .rcmulr 16624 ↾t crest 16752 0gc0g 16771 ordTopcordt 16830 ℝ*𝑠cxrs 16831 Mndcmnd 17977 MndHom cmhm 18020 CMndccmn 18973 mulGrpcmgp 19307 Ringcrg 19365 ℂfldccnfld 20166 TopMndctmd 22770 logclog 25245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ioc 12784 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-fac 13684 df-bc 13713 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 df-cos 15472 df-pi 15474 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-plusf 17917 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-submnd 18023 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mulg 18292 df-subg 18343 df-cntz 18514 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-subrg 19601 df-abv 19656 df-lmod 19704 df-scaf 19705 df-sra 20012 df-rgmod 20013 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-fbas 20163 df-fg 20164 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-nei 21798 df-lp 21836 df-perf 21837 df-cn 21927 df-cnp 21928 df-haus 22015 df-tx 22262 df-hmeo 22455 df-fil 22546 df-fm 22638 df-flim 22639 df-flf 22640 df-tmd 22772 df-tgp 22773 df-trg 22860 df-xms 23022 df-ms 23023 df-tms 23024 df-nm 23284 df-ngp 23285 df-nrg 23287 df-nlm 23288 df-cncf 23579 df-limc 24565 df-dv 24566 df-log 25247 |
This theorem is referenced by: xrge0tmd 31416 |
Copyright terms: Public domain | W3C validator |