Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifmhm Structured version   Visualization version   GIF version

Theorem xrge0iifmhm 31068
Description: The defined function from the closed unit interval to the extended nonnegative reals is a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
xrge0iifmhm 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrge0iifmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
21iistmd 31031 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
3 tmdmnd 22599 . . . 4 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd)
42, 3ax-mp 5 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd
5 xrge0cmn 20503 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
6 cmnmnd 18842 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
75, 6ax-mp 5 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
84, 7pm3.2i 471 . 2 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
9 xrge0iifhmeo.1 . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
109xrge0iifcnv 31062 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
1110simpli 484 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
12 f1of 6612 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
1311, 12ax-mp 5 . . 3 𝐹:(0[,]1)⟶(0[,]+∞)
14 xrge0iifhmeo.k . . . . 5 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
159, 14xrge0iifhom 31066 . . . 4 ((𝑦 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)))
1615rgen2a 3234 . . 3 𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧))
179, 14xrge0iif1 31067 . . 3 (𝐹‘1) = 0
1813, 16, 173pm3.2i 1333 . 2 (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)
19 unitsscn 31025 . . . 4 (0[,]1) ⊆ ℂ
20 eqid 2826 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
21 cnfldbas 20465 . . . . . 6 ℂ = (Base‘ℂfld)
2220, 21mgpbas 19165 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
231, 22ressbas2 16545 . . . 4 ((0[,]1) ⊆ ℂ → (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1))))
2419, 23ax-mp 5 . . 3 (0[,]1) = (Base‘((mulGrp‘ℂfld) ↾s (0[,]1)))
25 xrge0base 30586 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
26 cnfldex 20464 . . . . 5 fld ∈ V
27 ovex 7181 . . . . 5 (0[,]1) ∈ V
28 eqid 2826 . . . . . 6 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
2928, 20mgpress 19170 . . . . 5 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
3026, 27, 29mp2an 688 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
31 cnfldmul 20467 . . . . . 6 · = (.r‘ℂfld)
3228, 31ressmulr 16615 . . . . 5 ((0[,]1) ∈ V → · = (.r‘(ℂflds (0[,]1))))
3327, 32ax-mp 5 . . . 4 · = (.r‘(ℂflds (0[,]1)))
3430, 33mgpplusg 19163 . . 3 · = (+g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
35 xrge0plusg 30588 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
36 cnring 20483 . . . 4 fld ∈ Ring
37 1elunit 12846 . . . 4 1 ∈ (0[,]1)
38 cnfld1 20486 . . . . 5 1 = (1r‘ℂfld)
391, 21, 38ringidss 19247 . . . 4 ((ℂfld ∈ Ring ∧ (0[,]1) ⊆ ℂ ∧ 1 ∈ (0[,]1)) → 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1))))
4036, 19, 37, 39mp3an 1454 . . 3 1 = (0g‘((mulGrp‘ℂfld) ↾s (0[,]1)))
41 xrge00 30587 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4224, 25, 34, 35, 40, 41ismhm 17946 . 2 (𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ ((((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐹:(0[,]1)⟶(0[,]+∞) ∧ ∀𝑦 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) +𝑒 (𝐹𝑧)) ∧ (𝐹‘1) = 0)))
438, 18, 42mpbir2an 707 1 𝐹 ∈ (((mulGrp‘ℂfld) ↾s (0[,]1)) MndHom (ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  Vcvv 3500  wss 3940  ifcif 4470  cmpt 5143  ccnv 5553  wf 6348  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  +∞cpnf 10661  cle 10665  -cneg 10860   +𝑒 cxad 12495  [,]cicc 12731  expce 15405  Basecbs 16473  s cress 16474  .rcmulr 16556  t crest 16684  0gc0g 16703  ordTopcordt 16762  *𝑠cxrs 16763  Mndcmnd 17900   MndHom cmhm 17942  CMndccmn 18826  mulGrpcmgp 19159  Ringcrg 19217  fldccnfld 20461  TopMndctmd 22594  logclog 25051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-plusf 17841  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-mhm 17944  df-submnd 17945  df-grp 18036  df-minusg 18037  df-sbg 18038  df-mulg 18155  df-subg 18206  df-cntz 18377  df-cmn 18828  df-abl 18829  df-mgp 19160  df-ur 19172  df-ring 19219  df-cring 19220  df-subrg 19453  df-abv 19508  df-lmod 19556  df-scaf 19557  df-sra 19864  df-rgmod 19865  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-haus 21839  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-tmd 22596  df-tgp 22597  df-trg 22683  df-xms 22845  df-ms 22846  df-tms 22847  df-nm 23107  df-ngp 23108  df-nrg 23110  df-nlm 23111  df-cncf 23401  df-limc 24379  df-dv 24380  df-log 25053
This theorem is referenced by:  xrge0tmd  31074
  Copyright terms: Public domain W3C validator