MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Visualization version   GIF version

Theorem prdstmdd 23512
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y 𝑌 = (𝑆Xs𝑅)
prdstmdd.i (𝜑𝐼𝑊)
prdstmdd.s (𝜑𝑆𝑉)
prdstmdd.r (𝜑𝑅:𝐼⟶TopMnd)
Assertion
Ref Expression
prdstmdd (𝜑𝑌 ∈ TopMnd)

Proof of Theorem prdstmdd
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstmdd.i . . 3 (𝜑𝐼𝑊)
3 prdstmdd.s . . 3 (𝜑𝑆𝑉)
4 prdstmdd.r . . . 4 (𝜑𝑅:𝐼⟶TopMnd)
5 tmdmnd 23463 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ Mnd)
65ssriv 3951 . . . 4 TopMnd ⊆ Mnd
7 fss 6690 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
84, 6, 7sylancl 586 . . 3 (𝜑𝑅:𝐼⟶Mnd)
91, 2, 3, 8prdsmndd 18603 . 2 (𝜑𝑌 ∈ Mnd)
10 tmdtps 23464 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ TopSp)
1110ssriv 3951 . . . 4 TopMnd ⊆ TopSp
12 fss 6690 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ TopSp) → 𝑅:𝐼⟶TopSp)
134, 11, 12sylancl 586 . . 3 (𝜑𝑅:𝐼⟶TopSp)
141, 3, 2, 13prdstps 23017 . 2 (𝜑𝑌 ∈ TopSp)
15 eqid 2731 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
1633ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑆𝑉)
1723ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝐼𝑊)
184ffnd 6674 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
19183ad2ant1 1133 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
20 simp2 1137 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑓 ∈ (Base‘𝑌))
21 simp3 1138 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑔 ∈ (Base‘𝑌))
22 eqid 2731 . . . . . . 7 (+g𝑌) = (+g𝑌)
231, 15, 16, 17, 19, 20, 21, 22prdsplusgval 17369 . . . . . 6 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → (𝑓(+g𝑌)𝑔) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
2423mpoeq3dva 7439 . . . . 5 (𝜑 → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔)) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))))
25 eqid 2731 . . . . . 6 (+𝑓𝑌) = (+𝑓𝑌)
2615, 22, 25plusffval 18517 . . . . 5 (+𝑓𝑌) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔))
27 vex 3450 . . . . . . . . . 10 𝑓 ∈ V
28 vex 3450 . . . . . . . . . 10 𝑔 ∈ V
2927, 28op1std 7936 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (1st𝑧) = 𝑓)
3029fveq1d 6849 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((1st𝑧)‘𝑘) = (𝑓𝑘))
3127, 28op2ndd 7937 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (2nd𝑧) = 𝑔)
3231fveq1d 6849 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((2nd𝑧)‘𝑘) = (𝑔𝑘))
3330, 32oveq12d 7380 . . . . . . 7 (𝑧 = ⟨𝑓, 𝑔⟩ → (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)) = ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
3433mpteq2dv 5212 . . . . . 6 (𝑧 = ⟨𝑓, 𝑔⟩ → (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3534mpompt 7475 . . . . 5 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3624, 26, 353eqtr4g 2796 . . . 4 (𝜑 → (+𝑓𝑌) = (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))))
37 eqid 2731 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
38 eqid 2731 . . . . . . . 8 (TopOpen‘𝑌) = (TopOpen‘𝑌)
3915, 38istps 22320 . . . . . . 7 (𝑌 ∈ TopSp ↔ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
4014, 39sylib 217 . . . . . 6 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
41 txtopon 22979 . . . . . 6 (((TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
4240, 40, 41syl2anc 584 . . . . 5 (𝜑 → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
43 topnfn 17321 . . . . . . . 8 TopOpen Fn V
44 ssv 3971 . . . . . . . 8 TopSp ⊆ V
45 fnssres 6629 . . . . . . . 8 ((TopOpen Fn V ∧ TopSp ⊆ V) → (TopOpen ↾ TopSp) Fn TopSp)
4643, 44, 45mp2an 690 . . . . . . 7 (TopOpen ↾ TopSp) Fn TopSp
47 fvres 6866 . . . . . . . . 9 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) = (TopOpen‘𝑥))
48 eqid 2731 . . . . . . . . . 10 (TopOpen‘𝑥) = (TopOpen‘𝑥)
4948tpstop 22323 . . . . . . . . 9 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
5047, 49eqeltrd 2832 . . . . . . . 8 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) ∈ Top)
5150rgen 3062 . . . . . . 7 𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top
52 ffnfv 7071 . . . . . . 7 ((TopOpen ↾ TopSp):TopSp⟶Top ↔ ((TopOpen ↾ TopSp) Fn TopSp ∧ ∀𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top))
5346, 51, 52mpbir2an 709 . . . . . 6 (TopOpen ↾ TopSp):TopSp⟶Top
54 fco2 6700 . . . . . 6 (((TopOpen ↾ TopSp):TopSp⟶Top ∧ 𝑅:𝐼⟶TopSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
5553, 13, 54sylancr 587 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5633mpompt 7475 . . . . . 6 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
57 eqid 2731 . . . . . . . 8 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
58 eqid 2731 . . . . . . . 8 (+g‘(𝑅𝑘)) = (+g‘(𝑅𝑘))
594ffvelcdmda 7040 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopMnd)
6040adantr 481 . . . . . . . 8 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
6160, 60cnmpt1st 23056 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑓) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
621, 3, 2, 18, 38prdstopn 23016 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6362adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6463, 60eqeltrrd 2833 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
65 toponuni 22300 . . . . . . . . . . . . 13 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6664, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6766mpteq1d 5205 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)))
682adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝐼𝑊)
6955adantr 481 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
70 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝑘𝐼)
71 eqid 2731 . . . . . . . . . . . . 13 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
7271, 37ptpjcn 22999 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7368, 69, 70, 72syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7467, 73eqeltrd 2832 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7563eqcomd 2737 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
76 fvco3 6945 . . . . . . . . . . . 12 ((𝑅:𝐼⟶TopMnd ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
774, 76sylan 580 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
7875, 77oveq12d 7380 . . . . . . . . . 10 ((𝜑𝑘𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
7974, 78eleqtrd 2834 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
80 fveq1 6846 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥𝑘) = (𝑓𝑘))
8160, 60, 61, 60, 79, 80cnmpt21 23059 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8260, 60cnmpt2nd 23057 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑔) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
83 fveq1 6846 . . . . . . . . 9 (𝑥 = 𝑔 → (𝑥𝑘) = (𝑔𝑘))
8460, 60, 82, 60, 79, 83cnmpt21 23059 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑔𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8557, 58, 59, 60, 60, 81, 84cnmpt2plusg 23476 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8677oveq2d 7378 . . . . . . 7 ((𝜑𝑘𝐼) → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8785, 86eleqtrrd 2835 . . . . . 6 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8856, 87eqeltrid 2836 . . . . 5 ((𝜑𝑘𝐼) → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8937, 42, 2, 55, 88ptcn 23015 . . . 4 (𝜑 → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9036, 89eqeltrd 2832 . . 3 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9162oveq2d 7378 . . 3 (𝜑 → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9290, 91eleqtrrd 2835 . 2 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
9325, 38istmd 23462 . 2 (𝑌 ∈ TopMnd ↔ (𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌))))
949, 14, 92, 93syl3anbrc 1343 1 (𝜑𝑌 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3446  wss 3913  cop 4597   cuni 4870  cmpt 5193   × cxp 5636  cres 5640  ccom 5642   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  cmpo 7364  1st c1st 7924  2nd c2nd 7925  Basecbs 17094  +gcplusg 17147  TopOpenctopn 17317  tcpt 17334  Xscprds 17341  +𝑓cplusf 18508  Mndcmnd 18570  Topctop 22279  TopOnctopon 22296  TopSpctps 22318   Cn ccn 22612   ×t ctx 22948  TopMndctmd 23458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fi 9356  df-sup 9387  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-fz 13435  df-struct 17030  df-slot 17065  df-ndx 17077  df-base 17095  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-topgen 17339  df-pt 17340  df-prds 17343  df-plusf 18510  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cn 22615  df-cnp 22616  df-tx 22950  df-tmd 23460
This theorem is referenced by:  prdstgpd  23513
  Copyright terms: Public domain W3C validator