MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Visualization version   GIF version

Theorem prdstmdd 22868
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y 𝑌 = (𝑆Xs𝑅)
prdstmdd.i (𝜑𝐼𝑊)
prdstmdd.s (𝜑𝑆𝑉)
prdstmdd.r (𝜑𝑅:𝐼⟶TopMnd)
Assertion
Ref Expression
prdstmdd (𝜑𝑌 ∈ TopMnd)

Proof of Theorem prdstmdd
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstmdd.i . . 3 (𝜑𝐼𝑊)
3 prdstmdd.s . . 3 (𝜑𝑆𝑉)
4 prdstmdd.r . . . 4 (𝜑𝑅:𝐼⟶TopMnd)
5 tmdmnd 22819 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ Mnd)
65ssriv 3879 . . . 4 TopMnd ⊆ Mnd
7 fss 6515 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
84, 6, 7sylancl 589 . . 3 (𝜑𝑅:𝐼⟶Mnd)
91, 2, 3, 8prdsmndd 18053 . 2 (𝜑𝑌 ∈ Mnd)
10 tmdtps 22820 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ TopSp)
1110ssriv 3879 . . . 4 TopMnd ⊆ TopSp
12 fss 6515 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ TopSp) → 𝑅:𝐼⟶TopSp)
134, 11, 12sylancl 589 . . 3 (𝜑𝑅:𝐼⟶TopSp)
141, 3, 2, 13prdstps 22373 . 2 (𝜑𝑌 ∈ TopSp)
15 eqid 2738 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
1633ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑆𝑉)
1723ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝐼𝑊)
184ffnd 6499 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
19183ad2ant1 1134 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
20 simp2 1138 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑓 ∈ (Base‘𝑌))
21 simp3 1139 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑔 ∈ (Base‘𝑌))
22 eqid 2738 . . . . . . 7 (+g𝑌) = (+g𝑌)
231, 15, 16, 17, 19, 20, 21, 22prdsplusgval 16842 . . . . . 6 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → (𝑓(+g𝑌)𝑔) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
2423mpoeq3dva 7239 . . . . 5 (𝜑 → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔)) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))))
25 eqid 2738 . . . . . 6 (+𝑓𝑌) = (+𝑓𝑌)
2615, 22, 25plusffval 17967 . . . . 5 (+𝑓𝑌) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔))
27 vex 3401 . . . . . . . . . 10 𝑓 ∈ V
28 vex 3401 . . . . . . . . . 10 𝑔 ∈ V
2927, 28op1std 7717 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (1st𝑧) = 𝑓)
3029fveq1d 6670 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((1st𝑧)‘𝑘) = (𝑓𝑘))
3127, 28op2ndd 7718 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (2nd𝑧) = 𝑔)
3231fveq1d 6670 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((2nd𝑧)‘𝑘) = (𝑔𝑘))
3330, 32oveq12d 7182 . . . . . . 7 (𝑧 = ⟨𝑓, 𝑔⟩ → (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)) = ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
3433mpteq2dv 5123 . . . . . 6 (𝑧 = ⟨𝑓, 𝑔⟩ → (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3534mpompt 7274 . . . . 5 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3624, 26, 353eqtr4g 2798 . . . 4 (𝜑 → (+𝑓𝑌) = (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))))
37 eqid 2738 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
38 eqid 2738 . . . . . . . 8 (TopOpen‘𝑌) = (TopOpen‘𝑌)
3915, 38istps 21678 . . . . . . 7 (𝑌 ∈ TopSp ↔ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
4014, 39sylib 221 . . . . . 6 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
41 txtopon 22335 . . . . . 6 (((TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
4240, 40, 41syl2anc 587 . . . . 5 (𝜑 → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
43 topnfn 16795 . . . . . . . 8 TopOpen Fn V
44 ssv 3899 . . . . . . . 8 TopSp ⊆ V
45 fnssres 6453 . . . . . . . 8 ((TopOpen Fn V ∧ TopSp ⊆ V) → (TopOpen ↾ TopSp) Fn TopSp)
4643, 44, 45mp2an 692 . . . . . . 7 (TopOpen ↾ TopSp) Fn TopSp
47 fvres 6687 . . . . . . . . 9 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) = (TopOpen‘𝑥))
48 eqid 2738 . . . . . . . . . 10 (TopOpen‘𝑥) = (TopOpen‘𝑥)
4948tpstop 21681 . . . . . . . . 9 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
5047, 49eqeltrd 2833 . . . . . . . 8 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) ∈ Top)
5150rgen 3063 . . . . . . 7 𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top
52 ffnfv 6886 . . . . . . 7 ((TopOpen ↾ TopSp):TopSp⟶Top ↔ ((TopOpen ↾ TopSp) Fn TopSp ∧ ∀𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top))
5346, 51, 52mpbir2an 711 . . . . . 6 (TopOpen ↾ TopSp):TopSp⟶Top
54 fco2 6525 . . . . . 6 (((TopOpen ↾ TopSp):TopSp⟶Top ∧ 𝑅:𝐼⟶TopSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
5553, 13, 54sylancr 590 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5633mpompt 7274 . . . . . 6 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
57 eqid 2738 . . . . . . . 8 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
58 eqid 2738 . . . . . . . 8 (+g‘(𝑅𝑘)) = (+g‘(𝑅𝑘))
594ffvelrnda 6855 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopMnd)
6040adantr 484 . . . . . . . 8 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
6160, 60cnmpt1st 22412 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑓) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
621, 3, 2, 18, 38prdstopn 22372 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6362adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6463, 60eqeltrrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
65 toponuni 21658 . . . . . . . . . . . . 13 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6664, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6766mpteq1d 5116 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)))
682adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝐼𝑊)
6955adantr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
70 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝑘𝐼)
71 eqid 2738 . . . . . . . . . . . . 13 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
7271, 37ptpjcn 22355 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7368, 69, 70, 72syl3anc 1372 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7467, 73eqeltrd 2833 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7563eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
76 fvco3 6761 . . . . . . . . . . . 12 ((𝑅:𝐼⟶TopMnd ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
774, 76sylan 583 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
7875, 77oveq12d 7182 . . . . . . . . . 10 ((𝜑𝑘𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
7974, 78eleqtrd 2835 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
80 fveq1 6667 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥𝑘) = (𝑓𝑘))
8160, 60, 61, 60, 79, 80cnmpt21 22415 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8260, 60cnmpt2nd 22413 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑔) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
83 fveq1 6667 . . . . . . . . 9 (𝑥 = 𝑔 → (𝑥𝑘) = (𝑔𝑘))
8460, 60, 82, 60, 79, 83cnmpt21 22415 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑔𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8557, 58, 59, 60, 60, 81, 84cnmpt2plusg 22832 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8677oveq2d 7180 . . . . . . 7 ((𝜑𝑘𝐼) → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8785, 86eleqtrrd 2836 . . . . . 6 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8856, 87eqeltrid 2837 . . . . 5 ((𝜑𝑘𝐼) → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8937, 42, 2, 55, 88ptcn 22371 . . . 4 (𝜑 → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9036, 89eqeltrd 2833 . . 3 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9162oveq2d 7180 . . 3 (𝜑 → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9290, 91eleqtrrd 2836 . 2 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
9325, 38istmd 22818 . 2 (𝑌 ∈ TopMnd ↔ (𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌))))
949, 14, 92, 93syl3anbrc 1344 1 (𝜑𝑌 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  Vcvv 3397  wss 3841  cop 4519   cuni 4793  cmpt 5107   × cxp 5517  cres 5521  ccom 5523   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164  cmpo 7166  1st c1st 7705  2nd c2nd 7706  Basecbs 16579  +gcplusg 16661  TopOpenctopn 16791  tcpt 16808  Xscprds 16815  +𝑓cplusf 17958  Mndcmnd 18020  Topctop 21637  TopOnctopon 21654  TopSpctps 21676   Cn ccn 21968   ×t ctx 22304  TopMndctmd 22814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fi 8941  df-sup 8972  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-topgen 16813  df-pt 16814  df-prds 16817  df-plusf 17960  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cn 21971  df-cnp 21972  df-tx 22306  df-tmd 22816
This theorem is referenced by:  prdstgpd  22869
  Copyright terms: Public domain W3C validator