MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Visualization version   GIF version

Theorem prdstmdd 22304
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y 𝑌 = (𝑆Xs𝑅)
prdstmdd.i (𝜑𝐼𝑊)
prdstmdd.s (𝜑𝑆𝑉)
prdstmdd.r (𝜑𝑅:𝐼⟶TopMnd)
Assertion
Ref Expression
prdstmdd (𝜑𝑌 ∈ TopMnd)

Proof of Theorem prdstmdd
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstmdd.i . . 3 (𝜑𝐼𝑊)
3 prdstmdd.s . . 3 (𝜑𝑆𝑉)
4 prdstmdd.r . . . 4 (𝜑𝑅:𝐼⟶TopMnd)
5 tmdmnd 22256 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ Mnd)
65ssriv 3831 . . . 4 TopMnd ⊆ Mnd
7 fss 6295 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
84, 6, 7sylancl 580 . . 3 (𝜑𝑅:𝐼⟶Mnd)
91, 2, 3, 8prdsmndd 17683 . 2 (𝜑𝑌 ∈ Mnd)
10 tmdtps 22257 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ TopSp)
1110ssriv 3831 . . . 4 TopMnd ⊆ TopSp
12 fss 6295 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ TopSp) → 𝑅:𝐼⟶TopSp)
134, 11, 12sylancl 580 . . 3 (𝜑𝑅:𝐼⟶TopSp)
141, 3, 2, 13prdstps 21810 . 2 (𝜑𝑌 ∈ TopSp)
15 eqid 2825 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
1633ad2ant1 1167 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑆𝑉)
1723ad2ant1 1167 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝐼𝑊)
184ffnd 6283 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
19183ad2ant1 1167 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
20 simp2 1171 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑓 ∈ (Base‘𝑌))
21 simp3 1172 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑔 ∈ (Base‘𝑌))
22 eqid 2825 . . . . . . 7 (+g𝑌) = (+g𝑌)
231, 15, 16, 17, 19, 20, 21, 22prdsplusgval 16493 . . . . . 6 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → (𝑓(+g𝑌)𝑔) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
2423mpt2eq3dva 6984 . . . . 5 (𝜑 → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔)) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))))
25 eqid 2825 . . . . . 6 (+𝑓𝑌) = (+𝑓𝑌)
2615, 22, 25plusffval 17607 . . . . 5 (+𝑓𝑌) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔))
27 vex 3417 . . . . . . . . . 10 𝑓 ∈ V
28 vex 3417 . . . . . . . . . 10 𝑔 ∈ V
2927, 28op1std 7443 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (1st𝑧) = 𝑓)
3029fveq1d 6439 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((1st𝑧)‘𝑘) = (𝑓𝑘))
3127, 28op2ndd 7444 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (2nd𝑧) = 𝑔)
3231fveq1d 6439 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((2nd𝑧)‘𝑘) = (𝑔𝑘))
3330, 32oveq12d 6928 . . . . . . 7 (𝑧 = ⟨𝑓, 𝑔⟩ → (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)) = ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
3433mpteq2dv 4970 . . . . . 6 (𝑧 = ⟨𝑓, 𝑔⟩ → (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3534mpt2mpt 7017 . . . . 5 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3624, 26, 353eqtr4g 2886 . . . 4 (𝜑 → (+𝑓𝑌) = (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))))
37 eqid 2825 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
38 eqid 2825 . . . . . . . 8 (TopOpen‘𝑌) = (TopOpen‘𝑌)
3915, 38istps 21116 . . . . . . 7 (𝑌 ∈ TopSp ↔ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
4014, 39sylib 210 . . . . . 6 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
41 txtopon 21772 . . . . . 6 (((TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
4240, 40, 41syl2anc 579 . . . . 5 (𝜑 → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
43 topnfn 16446 . . . . . . . 8 TopOpen Fn V
44 ssv 3850 . . . . . . . 8 TopSp ⊆ V
45 fnssres 6241 . . . . . . . 8 ((TopOpen Fn V ∧ TopSp ⊆ V) → (TopOpen ↾ TopSp) Fn TopSp)
4643, 44, 45mp2an 683 . . . . . . 7 (TopOpen ↾ TopSp) Fn TopSp
47 fvres 6456 . . . . . . . . 9 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) = (TopOpen‘𝑥))
48 eqid 2825 . . . . . . . . . 10 (TopOpen‘𝑥) = (TopOpen‘𝑥)
4948tpstop 21119 . . . . . . . . 9 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
5047, 49eqeltrd 2906 . . . . . . . 8 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) ∈ Top)
5150rgen 3131 . . . . . . 7 𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top
52 ffnfv 6642 . . . . . . 7 ((TopOpen ↾ TopSp):TopSp⟶Top ↔ ((TopOpen ↾ TopSp) Fn TopSp ∧ ∀𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top))
5346, 51, 52mpbir2an 702 . . . . . 6 (TopOpen ↾ TopSp):TopSp⟶Top
54 fco2 6300 . . . . . 6 (((TopOpen ↾ TopSp):TopSp⟶Top ∧ 𝑅:𝐼⟶TopSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
5553, 13, 54sylancr 581 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5633mpt2mpt 7017 . . . . . 6 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
57 eqid 2825 . . . . . . . 8 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
58 eqid 2825 . . . . . . . 8 (+g‘(𝑅𝑘)) = (+g‘(𝑅𝑘))
594ffvelrnda 6613 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopMnd)
6040adantr 474 . . . . . . . 8 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
6160, 60cnmpt1st 21849 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑓) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
621, 3, 2, 18, 38prdstopn 21809 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6362adantr 474 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6463, 60eqeltrrd 2907 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
65 toponuni 21096 . . . . . . . . . . . . 13 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6664, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6766mpteq1d 4963 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)))
682adantr 474 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝐼𝑊)
6955adantr 474 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
70 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝑘𝐼)
71 eqid 2825 . . . . . . . . . . . . 13 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
7271, 37ptpjcn 21792 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7368, 69, 70, 72syl3anc 1494 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7467, 73eqeltrd 2906 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7563eqcomd 2831 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
76 fvco3 6526 . . . . . . . . . . . 12 ((𝑅:𝐼⟶TopMnd ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
774, 76sylan 575 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
7875, 77oveq12d 6928 . . . . . . . . . 10 ((𝜑𝑘𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
7974, 78eleqtrd 2908 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
80 fveq1 6436 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥𝑘) = (𝑓𝑘))
8160, 60, 61, 60, 79, 80cnmpt21 21852 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8260, 60cnmpt2nd 21850 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑔) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
83 fveq1 6436 . . . . . . . . 9 (𝑥 = 𝑔 → (𝑥𝑘) = (𝑔𝑘))
8460, 60, 82, 60, 79, 83cnmpt21 21852 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑔𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8557, 58, 59, 60, 60, 81, 84cnmpt2plusg 22269 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8677oveq2d 6926 . . . . . . 7 ((𝜑𝑘𝐼) → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8785, 86eleqtrrd 2909 . . . . . 6 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8856, 87syl5eqel 2910 . . . . 5 ((𝜑𝑘𝐼) → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8937, 42, 2, 55, 88ptcn 21808 . . . 4 (𝜑 → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9036, 89eqeltrd 2906 . . 3 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9162oveq2d 6926 . . 3 (𝜑 → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9290, 91eleqtrrd 2909 . 2 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
9325, 38istmd 22255 . 2 (𝑌 ∈ TopMnd ↔ (𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌))))
949, 14, 92, 93syl3anbrc 1447 1 (𝜑𝑌 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  wss 3798  cop 4405   cuni 4660  cmpt 4954   × cxp 5344  cres 5348  ccom 5350   Fn wfn 6122  wf 6123  cfv 6127  (class class class)co 6910  cmpt2 6912  1st c1st 7431  2nd c2nd 7432  Basecbs 16229  +gcplusg 16312  TopOpenctopn 16442  tcpt 16459  Xscprds 16466  +𝑓cplusf 17599  Mndcmnd 17654  Topctop 21075  TopOnctopon 21092  TopSpctps 21114   Cn ccn 21406   ×t ctx 21741  TopMndctmd 22251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fi 8592  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-topgen 16464  df-pt 16465  df-prds 16468  df-plusf 17601  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cn 21409  df-cnp 21410  df-tx 21743  df-tmd 22253
This theorem is referenced by:  prdstgpd  22305
  Copyright terms: Public domain W3C validator