MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Visualization version   GIF version

Theorem prdstmdd 23183
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y 𝑌 = (𝑆Xs𝑅)
prdstmdd.i (𝜑𝐼𝑊)
prdstmdd.s (𝜑𝑆𝑉)
prdstmdd.r (𝜑𝑅:𝐼⟶TopMnd)
Assertion
Ref Expression
prdstmdd (𝜑𝑌 ∈ TopMnd)

Proof of Theorem prdstmdd
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstmdd.i . . 3 (𝜑𝐼𝑊)
3 prdstmdd.s . . 3 (𝜑𝑆𝑉)
4 prdstmdd.r . . . 4 (𝜑𝑅:𝐼⟶TopMnd)
5 tmdmnd 23134 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ Mnd)
65ssriv 3921 . . . 4 TopMnd ⊆ Mnd
7 fss 6601 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
84, 6, 7sylancl 585 . . 3 (𝜑𝑅:𝐼⟶Mnd)
91, 2, 3, 8prdsmndd 18333 . 2 (𝜑𝑌 ∈ Mnd)
10 tmdtps 23135 . . . . 5 (𝑥 ∈ TopMnd → 𝑥 ∈ TopSp)
1110ssriv 3921 . . . 4 TopMnd ⊆ TopSp
12 fss 6601 . . . 4 ((𝑅:𝐼⟶TopMnd ∧ TopMnd ⊆ TopSp) → 𝑅:𝐼⟶TopSp)
134, 11, 12sylancl 585 . . 3 (𝜑𝑅:𝐼⟶TopSp)
141, 3, 2, 13prdstps 22688 . 2 (𝜑𝑌 ∈ TopSp)
15 eqid 2738 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
1633ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑆𝑉)
1723ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝐼𝑊)
184ffnd 6585 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
19183ad2ant1 1131 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
20 simp2 1135 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑓 ∈ (Base‘𝑌))
21 simp3 1136 . . . . . . 7 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → 𝑔 ∈ (Base‘𝑌))
22 eqid 2738 . . . . . . 7 (+g𝑌) = (+g𝑌)
231, 15, 16, 17, 19, 20, 21, 22prdsplusgval 17101 . . . . . 6 ((𝜑𝑓 ∈ (Base‘𝑌) ∧ 𝑔 ∈ (Base‘𝑌)) → (𝑓(+g𝑌)𝑔) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
2423mpoeq3dva 7330 . . . . 5 (𝜑 → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔)) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))))
25 eqid 2738 . . . . . 6 (+𝑓𝑌) = (+𝑓𝑌)
2615, 22, 25plusffval 18247 . . . . 5 (+𝑓𝑌) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓(+g𝑌)𝑔))
27 vex 3426 . . . . . . . . . 10 𝑓 ∈ V
28 vex 3426 . . . . . . . . . 10 𝑔 ∈ V
2927, 28op1std 7814 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (1st𝑧) = 𝑓)
3029fveq1d 6758 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((1st𝑧)‘𝑘) = (𝑓𝑘))
3127, 28op2ndd 7815 . . . . . . . . 9 (𝑧 = ⟨𝑓, 𝑔⟩ → (2nd𝑧) = 𝑔)
3231fveq1d 6758 . . . . . . . 8 (𝑧 = ⟨𝑓, 𝑔⟩ → ((2nd𝑧)‘𝑘) = (𝑔𝑘))
3330, 32oveq12d 7273 . . . . . . 7 (𝑧 = ⟨𝑓, 𝑔⟩ → (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)) = ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
3433mpteq2dv 5172 . . . . . 6 (𝑧 = ⟨𝑓, 𝑔⟩ → (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3534mpompt 7366 . . . . 5 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑘𝐼 ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))))
3624, 26, 353eqtr4g 2804 . . . 4 (𝜑 → (+𝑓𝑌) = (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))))
37 eqid 2738 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
38 eqid 2738 . . . . . . . 8 (TopOpen‘𝑌) = (TopOpen‘𝑌)
3915, 38istps 21991 . . . . . . 7 (𝑌 ∈ TopSp ↔ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
4014, 39sylib 217 . . . . . 6 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
41 txtopon 22650 . . . . . 6 (((TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)) ∧ (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌))) → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
4240, 40, 41syl2anc 583 . . . . 5 (𝜑 → ((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) ∈ (TopOn‘((Base‘𝑌) × (Base‘𝑌))))
43 topnfn 17053 . . . . . . . 8 TopOpen Fn V
44 ssv 3941 . . . . . . . 8 TopSp ⊆ V
45 fnssres 6539 . . . . . . . 8 ((TopOpen Fn V ∧ TopSp ⊆ V) → (TopOpen ↾ TopSp) Fn TopSp)
4643, 44, 45mp2an 688 . . . . . . 7 (TopOpen ↾ TopSp) Fn TopSp
47 fvres 6775 . . . . . . . . 9 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) = (TopOpen‘𝑥))
48 eqid 2738 . . . . . . . . . 10 (TopOpen‘𝑥) = (TopOpen‘𝑥)
4948tpstop 21994 . . . . . . . . 9 (𝑥 ∈ TopSp → (TopOpen‘𝑥) ∈ Top)
5047, 49eqeltrd 2839 . . . . . . . 8 (𝑥 ∈ TopSp → ((TopOpen ↾ TopSp)‘𝑥) ∈ Top)
5150rgen 3073 . . . . . . 7 𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top
52 ffnfv 6974 . . . . . . 7 ((TopOpen ↾ TopSp):TopSp⟶Top ↔ ((TopOpen ↾ TopSp) Fn TopSp ∧ ∀𝑥 ∈ TopSp ((TopOpen ↾ TopSp)‘𝑥) ∈ Top))
5346, 51, 52mpbir2an 707 . . . . . 6 (TopOpen ↾ TopSp):TopSp⟶Top
54 fco2 6611 . . . . . 6 (((TopOpen ↾ TopSp):TopSp⟶Top ∧ 𝑅:𝐼⟶TopSp) → (TopOpen ∘ 𝑅):𝐼⟶Top)
5553, 13, 54sylancr 586 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5633mpompt 7366 . . . . . 6 (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) = (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘)))
57 eqid 2738 . . . . . . . 8 (TopOpen‘(𝑅𝑘)) = (TopOpen‘(𝑅𝑘))
58 eqid 2738 . . . . . . . 8 (+g‘(𝑅𝑘)) = (+g‘(𝑅𝑘))
594ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ TopMnd)
6040adantr 480 . . . . . . . 8 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
6160, 60cnmpt1st 22727 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑓) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
621, 3, 2, 18, 38prdstopn 22687 . . . . . . . . . . . . . . 15 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6362adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6463, 60eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
65 toponuni 21971 . . . . . . . . . . . . 13 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6664, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
6766mpteq1d 5165 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)))
682adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝐼𝑊)
6955adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
70 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 𝑘𝐼)
71 eqid 2738 . . . . . . . . . . . . 13 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
7271, 37ptpjcn 22670 . . . . . . . . . . . 12 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7368, 69, 70, 72syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7467, 73eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
7563eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
76 fvco3 6849 . . . . . . . . . . . 12 ((𝑅:𝐼⟶TopMnd ∧ 𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
774, 76sylan 579 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → ((TopOpen ∘ 𝑅)‘𝑘) = (TopOpen‘(𝑅𝑘)))
7875, 77oveq12d 7273 . . . . . . . . . 10 ((𝜑𝑘𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
7974, 78eleqtrd 2841 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑘)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑘))))
80 fveq1 6755 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥𝑘) = (𝑓𝑘))
8160, 60, 61, 60, 79, 80cnmpt21 22730 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑓𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8260, 60cnmpt2nd 22728 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ 𝑔) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
83 fveq1 6755 . . . . . . . . 9 (𝑥 = 𝑔 → (𝑥𝑘) = (𝑔𝑘))
8460, 60, 82, 60, 79, 83cnmpt21 22730 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ (𝑔𝑘)) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8557, 58, 59, 60, 60, 81, 84cnmpt2plusg 23147 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8677oveq2d 7271 . . . . . . 7 ((𝜑𝑘𝐼) → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘(𝑅𝑘))))
8785, 86eleqtrrd 2842 . . . . . 6 ((𝜑𝑘𝐼) → (𝑓 ∈ (Base‘𝑌), 𝑔 ∈ (Base‘𝑌) ↦ ((𝑓𝑘)(+g‘(𝑅𝑘))(𝑔𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8856, 87eqeltrid 2843 . . . . 5 ((𝜑𝑘𝐼) → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn ((TopOpen ∘ 𝑅)‘𝑘)))
8937, 42, 2, 55, 88ptcn 22686 . . . 4 (𝜑 → (𝑧 ∈ ((Base‘𝑌) × (Base‘𝑌)) ↦ (𝑘𝐼 ↦ (((1st𝑧)‘𝑘)(+g‘(𝑅𝑘))((2nd𝑧)‘𝑘)))) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9036, 89eqeltrd 2839 . . 3 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9162oveq2d 7271 . . 3 (𝜑 → (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)) = (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (∏t‘(TopOpen ∘ 𝑅))))
9290, 91eleqtrrd 2842 . 2 (𝜑 → (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌)))
9325, 38istmd 23133 . 2 (𝑌 ∈ TopMnd ↔ (𝑌 ∈ Mnd ∧ 𝑌 ∈ TopSp ∧ (+𝑓𝑌) ∈ (((TopOpen‘𝑌) ×t (TopOpen‘𝑌)) Cn (TopOpen‘𝑌))))
949, 14, 92, 93syl3anbrc 1341 1 (𝜑𝑌 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  +gcplusg 16888  TopOpenctopn 17049  tcpt 17066  Xscprds 17073  +𝑓cplusf 18238  Mndcmnd 18300  Topctop 21950  TopOnctopon 21967  TopSpctps 21989   Cn ccn 22283   ×t ctx 22619  TopMndctmd 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-topgen 17071  df-pt 17072  df-prds 17075  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-tmd 23131
This theorem is referenced by:  prdstgpd  23184
  Copyright terms: Public domain W3C validator