Step | Hyp | Ref
| Expression |
1 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝐵 ↑m 𝑤) = (𝐵 ↑m
∅)) |
2 | 1 | mpteq1d 5125 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵 ↑m ∅) ↦ (𝐺 Σg
𝑥))) |
3 | | xpeq1 5542 |
. . . . . . . . . 10
⊢ (𝑤 = ∅ → (𝑤 × {𝐽}) = (∅ × {𝐽})) |
4 | | 0xp 5623 |
. . . . . . . . . 10
⊢ (∅
× {𝐽}) =
∅ |
5 | 3, 4 | eqtrdi 2809 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → (𝑤 × {𝐽}) = ∅) |
6 | 5 | fveq2d 6667 |
. . . . . . . 8
⊢ (𝑤 = ∅ →
(∏t‘(𝑤 × {𝐽})) =
(∏t‘∅)) |
7 | 6 | oveq1d 7171 |
. . . . . . 7
⊢ (𝑤 = ∅ →
((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘∅) Cn
𝐽)) |
8 | 2, 7 | eleq12d 2846 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵 ↑m ∅) ↦ (𝐺 Σg
𝑥)) ∈
((∏t‘∅) Cn 𝐽))) |
9 | 8 | imbi2d 344 |
. . . . 5
⊢ (𝑤 = ∅ → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m ∅) ↦ (𝐺 Σg
𝑥)) ∈
((∏t‘∅) Cn 𝐽)))) |
10 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝐵 ↑m 𝑤) = (𝐵 ↑m 𝑦)) |
11 | 10 | mpteq1d 5125 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥))) |
12 | | xpeq1 5542 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 × {𝐽}) = (𝑦 × {𝐽})) |
13 | 12 | fveq2d 6667 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝑦 × {𝐽}))) |
14 | 13 | oveq1d 7171 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) |
15 | 11, 14 | eleq12d 2846 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽))) |
16 | 15 | imbi2d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)))) |
17 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵 ↑m 𝑤) = (𝐵 ↑m (𝑦 ∪ {𝑧}))) |
18 | 17 | mpteq1d 5125 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥))) |
19 | | xpeq1 5542 |
. . . . . . . . 9
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 × {𝐽}) = ((𝑦 ∪ {𝑧}) × {𝐽})) |
20 | 19 | fveq2d 6667 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∏t‘(𝑤 × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))) |
21 | 20 | oveq1d 7171 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
22 | 18, 21 | eleq12d 2846 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))) |
23 | 22 | imbi2d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))) |
24 | | oveq2 7164 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (𝐵 ↑m 𝑤) = (𝐵 ↑m 𝐴)) |
25 | 24 | mpteq1d 5125 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥))) |
26 | | xpeq1 5542 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → (𝑤 × {𝐽}) = (𝐴 × {𝐽})) |
27 | 26 | fveq2d 6667 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝐴 × {𝐽}))) |
28 | 27 | oveq1d 7171 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)) |
29 | 25, 28 | eleq12d 2846 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝐴 × {𝐽})) Cn 𝐽))) |
30 | 29 | imbi2d 344 |
. . . . 5
⊢ (𝑤 = 𝐴 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))) |
31 | | elmapfn 8460 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐵 ↑m ∅) → 𝑥 Fn ∅) |
32 | | fn0 6467 |
. . . . . . . . . 10
⊢ (𝑥 Fn ∅ ↔ 𝑥 = ∅) |
33 | 31, 32 | sylib 221 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ↑m ∅) → 𝑥 = ∅) |
34 | 33 | oveq2d 7172 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ↑m ∅) → (𝐺 Σg
𝑥) = (𝐺 Σg
∅)) |
35 | | eqid 2758 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
36 | 35 | gsum0 17973 |
. . . . . . . 8
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
37 | 34, 36 | eqtrdi 2809 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ↑m ∅) → (𝐺 Σg
𝑥) =
(0g‘𝐺)) |
38 | 37 | mpteq2ia 5127 |
. . . . . 6
⊢ (𝑥 ∈ (𝐵 ↑m ∅) ↦ (𝐺 Σg
𝑥)) = (𝑥 ∈ (𝐵 ↑m ∅) ↦
(0g‘𝐺)) |
39 | | 0ex 5181 |
. . . . . . . 8
⊢ ∅
∈ V |
40 | | tmdgsum.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝐺) |
41 | | tmdgsum.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
42 | 40, 41 | tmdtopon 22794 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵)) |
43 | 42 | adantl 485 |
. . . . . . . 8
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐽 ∈ (TopOn‘𝐵)) |
44 | 4 | fveq2i 6666 |
. . . . . . . . . 10
⊢
(∏t‘(∅ × {𝐽})) =
(∏t‘∅) |
45 | 44 | eqcomi 2767 |
. . . . . . . . 9
⊢
(∏t‘∅) = (∏t‘(∅
× {𝐽})) |
46 | 45 | pttoponconst 22310 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝐽 ∈
(TopOn‘𝐵)) →
(∏t‘∅) ∈ (TopOn‘(𝐵 ↑m
∅))) |
47 | 39, 43, 46 | sylancr 590 |
. . . . . . 7
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) →
(∏t‘∅) ∈ (TopOn‘(𝐵 ↑m
∅))) |
48 | | tmdmnd 22788 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) |
49 | 48 | adantl 485 |
. . . . . . . 8
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐺 ∈ Mnd) |
50 | 41, 35 | mndidcl 18005 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) →
(0g‘𝐺)
∈ 𝐵) |
52 | 47, 43, 51 | cnmptc 22375 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m ∅) ↦
(0g‘𝐺))
∈ ((∏t‘∅) Cn 𝐽)) |
53 | 38, 52 | eqeltrid 2856 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m ∅) ↦ (𝐺 Σg
𝑥)) ∈
((∏t‘∅) Cn 𝐽)) |
54 | | oveq2 7164 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑤)) |
55 | 54 | cbvmptv 5139 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤)) |
56 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
57 | | simpl1l 1221 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝐺 ∈ CMnd) |
58 | | simp2l 1196 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ∈ Fin) |
59 | | snfi 8627 |
. . . . . . . . . . . . . 14
⊢ {𝑧} ∈ Fin |
60 | | unfi 8754 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
61 | 58, 59, 60 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
62 | 61 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) ∈ Fin) |
63 | | elmapi 8444 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵) |
64 | 63 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵) |
65 | | fvexd 6678 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (0g‘𝐺) ∈ V) |
66 | 64, 62, 65 | fdmfifsupp 8889 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝑤 finSupp (0g‘𝐺)) |
67 | | simpl2r 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → ¬ 𝑧 ∈ 𝑦) |
68 | | disjsn 4607 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
69 | 67, 68 | sylibr 237 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑦 ∩ {𝑧}) = ∅) |
70 | | eqidd 2759 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
71 | 41, 35, 56, 57, 62, 64, 66, 69, 70 | gsumsplit 19129 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝐺 Σg 𝑤) = ((𝐺 Σg (𝑤 ↾ 𝑦))(+g‘𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))) |
72 | 71 | mpteq2dva 5131 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤)) = (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤 ↾ 𝑦))(+g‘𝐺)(𝐺 Σg (𝑤 ↾ {𝑧}))))) |
73 | 55, 72 | syl5eq 2805 |
. . . . . . . . 9
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤 ↾ 𝑦))(+g‘𝐺)(𝐺 Σg (𝑤 ↾ {𝑧}))))) |
74 | | simp1r 1195 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐺 ∈ TopMnd) |
75 | 74, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵)) |
76 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) |
77 | 76 | pttoponconst 22310 |
. . . . . . . . . . 11
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵 ↑m (𝑦 ∪ {𝑧})))) |
78 | 61, 75, 77 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵 ↑m (𝑦 ∪ {𝑧})))) |
79 | | toponuni 21627 |
. . . . . . . . . . . . . 14
⊢
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝐵 ↑m (𝑦 ∪ {𝑧})) = ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝐵 ↑m (𝑦 ∪ {𝑧})) = ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))) |
81 | 80 | mpteq1d 5125 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤 ↾ 𝑦)) = (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤 ↾ 𝑦))) |
82 | | topontop 21626 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
83 | 74, 42, 82 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ Top) |
84 | | fconst6g 6558 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top) |
86 | | ssun1 4079 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
87 | 86 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ⊆ (𝑦 ∪ {𝑧})) |
88 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢ ∪ (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) |
89 | | xpssres 5865 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽})) |
90 | 86, 89 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽}) |
91 | 90 | eqcomi 2767 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 × {𝐽}) = (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) |
92 | 91 | fveq2i 6666 |
. . . . . . . . . . . . . 14
⊢
(∏t‘(𝑦 × {𝐽})) = (∏t‘(((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦)) |
93 | 88, 76, 92 | ptrescn 22352 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤 ↾ 𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽})))) |
94 | 61, 85, 87, 93 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤 ↾ 𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽})))) |
95 | 81, 94 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤 ↾ 𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽})))) |
96 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
(∏t‘(𝑦 × {𝐽})) = (∏t‘(𝑦 × {𝐽})) |
97 | 96 | pttoponconst 22310 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) →
(∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵 ↑m 𝑦))) |
98 | 58, 75, 97 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵 ↑m 𝑦))) |
99 | | simp3 1135 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) |
100 | | oveq2 7164 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑤 ↾ 𝑦) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑤 ↾ 𝑦))) |
101 | 78, 95, 98, 99, 100 | cnmpt11 22376 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ 𝑦))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
102 | 64 | feqmptd 6726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝑤 = (𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤‘𝑘))) |
103 | 102 | reseq1d 5827 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤‘𝑘)) ↾ {𝑧})) |
104 | | ssun2 4080 |
. . . . . . . . . . . . . . . 16
⊢ {𝑧} ⊆ (𝑦 ∪ {𝑧}) |
105 | | resmpt 5882 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤‘𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘))) |
106 | 104, 105 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤‘𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘)) |
107 | 103, 106 | eqtrdi 2809 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘))) |
108 | 107 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘)))) |
109 | | cmnmnd 19002 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
110 | 57, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝐺 ∈ Mnd) |
111 | | vex 3413 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
112 | 111 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝑧 ∈ V) |
113 | | vsnid 4562 |
. . . . . . . . . . . . . . . 16
⊢ 𝑧 ∈ {𝑧} |
114 | | elun2 4084 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
115 | 113, 114 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
116 | 64, 115 | ffvelrnd 6849 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝑤‘𝑧) ∈ 𝐵) |
117 | | fveq2 6663 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → (𝑤‘𝑘) = (𝑤‘𝑧)) |
118 | 41, 117 | gsumsn 19155 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Mnd ∧ 𝑧 ∈ V ∧ (𝑤‘𝑧) ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘))) = (𝑤‘𝑧)) |
119 | 110, 112,
116, 118 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤‘𝑘))) = (𝑤‘𝑧)) |
120 | 108, 119 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝑤‘𝑧)) |
121 | 120 | mpteq2dva 5131 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) = (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤‘𝑧))) |
122 | 80 | mpteq1d 5125 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤‘𝑧)) = (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤‘𝑧))) |
123 | 113, 114 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑧 ∈ (𝑦 ∪ {𝑧})) |
124 | 88, 76 | ptpjcn 22324 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤‘𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧))) |
125 | 61, 85, 123, 124 | syl3anc 1368 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ ∪
(∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤‘𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧))) |
126 | 122, 125 | eqeltrd 2852 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤‘𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧))) |
127 | | fvconst2g 6961 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽) |
128 | 83, 123, 127 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽) |
129 | 128 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
130 | 126, 129 | eleqtrd 2854 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝑤‘𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
131 | 121, 130 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
132 | 40, 56, 74, 78, 101, 131 | cnmpt1plusg 22800 |
. . . . . . . . 9
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤 ↾ 𝑦))(+g‘𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
133 | 73, 132 | eqeltrd 2852 |
. . . . . . . 8
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)) |
134 | 133 | 3expia 1118 |
. . . . . . 7
⊢ (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦)) → ((𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))) |
135 | 134 | expcom 417 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → ((𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))) |
136 | 135 | a2d 29 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))) |
137 | 9, 16, 23, 30, 53, 136 | findcard2s 8749 |
. . . 4
⊢ (𝐴 ∈ Fin → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝐴 × {𝐽})) Cn 𝐽))) |
138 | 137 | com12 32 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝐴 ∈ Fin → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝐴 × {𝐽})) Cn 𝐽))) |
139 | 138 | 3impia 1114 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈
((∏t‘(𝐴 × {𝐽})) Cn 𝐽)) |
140 | 42, 82 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ Top) |
141 | | xkopt 22368 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝐽}))) |
142 | 140, 141 | sylan 583 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝐽}))) |
143 | 142 | 3adant1 1127 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝐽}))) |
144 | 143 | oveq1d 7171 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → ((𝐽 ↑ko 𝒫
𝐴) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)) |
145 | 139, 144 | eleqtrrd 2855 |
1
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) |