MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum Structured version   Visualization version   GIF version

Theorem tmdgsum 23446
Description: In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when 𝐴 is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tmdgsum ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽ko 𝒫 𝐴) Cn 𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝐵   𝑥,𝐺

Proof of Theorem tmdgsum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . . . . . . 8 (𝑤 = ∅ → (𝐵m 𝑤) = (𝐵m ∅))
21mpteq1d 5200 . . . . . . 7 (𝑤 = ∅ → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵m ∅) ↦ (𝐺 Σg 𝑥)))
3 xpeq1 5647 . . . . . . . . . 10 (𝑤 = ∅ → (𝑤 × {𝐽}) = (∅ × {𝐽}))
4 0xp 5730 . . . . . . . . . 10 (∅ × {𝐽}) = ∅
53, 4eqtrdi 2792 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 × {𝐽}) = ∅)
65fveq2d 6846 . . . . . . . 8 (𝑤 = ∅ → (∏t‘(𝑤 × {𝐽})) = (∏t‘∅))
76oveq1d 7372 . . . . . . 7 (𝑤 = ∅ → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘∅) Cn 𝐽))
82, 7eleq12d 2832 . . . . . 6 (𝑤 = ∅ → ((𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵m ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽)))
98imbi2d 340 . . . . 5 (𝑤 = ∅ → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽))))
10 oveq2 7365 . . . . . . . 8 (𝑤 = 𝑦 → (𝐵m 𝑤) = (𝐵m 𝑦))
1110mpteq1d 5200 . . . . . . 7 (𝑤 = 𝑦 → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)))
12 xpeq1 5647 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 × {𝐽}) = (𝑦 × {𝐽}))
1312fveq2d 6846 . . . . . . . 8 (𝑤 = 𝑦 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝑦 × {𝐽})))
1413oveq1d 7372 . . . . . . 7 (𝑤 = 𝑦 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))
1511, 14eleq12d 2832 . . . . . 6 (𝑤 = 𝑦 → ((𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)))
1615imbi2d 340 . . . . 5 (𝑤 = 𝑦 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))))
17 oveq2 7365 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵m 𝑤) = (𝐵m (𝑦 ∪ {𝑧})))
1817mpteq1d 5200 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)))
19 xpeq1 5647 . . . . . . . . 9 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 × {𝐽}) = ((𝑦 ∪ {𝑧}) × {𝐽}))
2019fveq2d 6846 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → (∏t‘(𝑤 × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
2120oveq1d 7372 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
2218, 21eleq12d 2832 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))
2322imbi2d 340 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
24 oveq2 7365 . . . . . . . 8 (𝑤 = 𝐴 → (𝐵m 𝑤) = (𝐵m 𝐴))
2524mpteq1d 5200 . . . . . . 7 (𝑤 = 𝐴 → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)))
26 xpeq1 5647 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑤 × {𝐽}) = (𝐴 × {𝐽}))
2726fveq2d 6846 . . . . . . . 8 (𝑤 = 𝐴 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝐴 × {𝐽})))
2827oveq1d 7372 . . . . . . 7 (𝑤 = 𝐴 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
2925, 28eleq12d 2832 . . . . . 6 (𝑤 = 𝐴 → ((𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
3029imbi2d 340 . . . . 5 (𝑤 = 𝐴 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))))
31 elmapfn 8803 . . . . . . . . . 10 (𝑥 ∈ (𝐵m ∅) → 𝑥 Fn ∅)
32 fn0 6632 . . . . . . . . . 10 (𝑥 Fn ∅ ↔ 𝑥 = ∅)
3331, 32sylib 217 . . . . . . . . 9 (𝑥 ∈ (𝐵m ∅) → 𝑥 = ∅)
3433oveq2d 7373 . . . . . . . 8 (𝑥 ∈ (𝐵m ∅) → (𝐺 Σg 𝑥) = (𝐺 Σg ∅))
35 eqid 2736 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
3635gsum0 18539 . . . . . . . 8 (𝐺 Σg ∅) = (0g𝐺)
3734, 36eqtrdi 2792 . . . . . . 7 (𝑥 ∈ (𝐵m ∅) → (𝐺 Σg 𝑥) = (0g𝐺))
3837mpteq2ia 5208 . . . . . 6 (𝑥 ∈ (𝐵m ∅) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵m ∅) ↦ (0g𝐺))
39 0ex 5264 . . . . . . . 8 ∅ ∈ V
40 tmdgsum.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
41 tmdgsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
4240, 41tmdtopon 23432 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
4342adantl 482 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐽 ∈ (TopOn‘𝐵))
444fveq2i 6845 . . . . . . . . . 10 (∏t‘(∅ × {𝐽})) = (∏t‘∅)
4544eqcomi 2745 . . . . . . . . 9 (∏t‘∅) = (∏t‘(∅ × {𝐽}))
4645pttoponconst 22948 . . . . . . . 8 ((∅ ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘∅) ∈ (TopOn‘(𝐵m ∅)))
4739, 43, 46sylancr 587 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (∏t‘∅) ∈ (TopOn‘(𝐵m ∅)))
48 tmdmnd 23426 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
4948adantl 482 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐺 ∈ Mnd)
5041, 35mndidcl 18571 . . . . . . . 8 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
5149, 50syl 17 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (0g𝐺) ∈ 𝐵)
5247, 43, 51cnmptc 23013 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m ∅) ↦ (0g𝐺)) ∈ ((∏t‘∅) Cn 𝐽))
5338, 52eqeltrid 2842 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽))
54 oveq2 7365 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑤))
5554cbvmptv 5218 . . . . . . . . . 10 (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤))
56 eqid 2736 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
57 simpl1l 1224 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝐺 ∈ CMnd)
58 simp2l 1199 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ∈ Fin)
59 snfi 8988 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
60 unfi 9116 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
6158, 59, 60sylancl 586 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑦 ∪ {𝑧}) ∈ Fin)
6261adantr 481 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) ∈ Fin)
63 elmapi 8787 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵)
6463adantl 482 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵)
65 fvexd 6857 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (0g𝐺) ∈ V)
6664, 62, 65fdmfifsupp 9315 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝑤 finSupp (0g𝐺))
67 simpl2r 1227 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → ¬ 𝑧𝑦)
68 disjsn 4672 . . . . . . . . . . . . 13 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
6967, 68sylibr 233 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑦 ∩ {𝑧}) = ∅)
70 eqidd 2737 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
7141, 35, 56, 57, 62, 64, 66, 69, 70gsumsplit 19705 . . . . . . . . . . 11 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝐺 Σg 𝑤) = ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧}))))
7271mpteq2dva 5205 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤)) = (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))))
7355, 72eqtrid 2788 . . . . . . . . 9 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))))
74 simp1r 1198 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐺 ∈ TopMnd)
7574, 42syl 17 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵))
76 eqid 2736 . . . . . . . . . . . 12 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))
7776pttoponconst 22948 . . . . . . . . . . 11 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵m (𝑦 ∪ {𝑧}))))
7861, 75, 77syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵m (𝑦 ∪ {𝑧}))))
79 toponuni 22263 . . . . . . . . . . . . . 14 ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵m (𝑦 ∪ {𝑧}))) → (𝐵m (𝑦 ∪ {𝑧})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
8078, 79syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝐵m (𝑦 ∪ {𝑧})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
8180mpteq1d 5200 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑦)) = (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)))
82 topontop 22262 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
8374, 42, 823syl 18 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ Top)
84 fconst6g 6731 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top)
8583, 84syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top)
86 ssun1 4132 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
8786a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ⊆ (𝑦 ∪ {𝑧}))
88 eqid 2736 . . . . . . . . . . . . . 14 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))
89 xpssres 5974 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽}))
9086, 89ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽})
9190eqcomi 2745 . . . . . . . . . . . . . . 15 (𝑦 × {𝐽}) = (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦)
9291fveq2i 6845 . . . . . . . . . . . . . 14 (∏t‘(𝑦 × {𝐽})) = (∏t‘(((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦))
9388, 76, 92ptrescn 22990 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
9461, 85, 87, 93syl3anc 1371 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
9581, 94eqeltrd 2838 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
96 eqid 2736 . . . . . . . . . . . . 13 (∏t‘(𝑦 × {𝐽})) = (∏t‘(𝑦 × {𝐽}))
9796pttoponconst 22948 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵m 𝑦)))
9858, 75, 97syl2anc 584 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵m 𝑦)))
99 simp3 1138 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))
100 oveq2 7365 . . . . . . . . . . 11 (𝑥 = (𝑤𝑦) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑤𝑦)))
10178, 95, 98, 99, 100cnmpt11 23014 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤𝑦))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
10264feqmptd 6910 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝑤 = (𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)))
103102reseq1d 5936 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}))
104 ssun2 4133 . . . . . . . . . . . . . . . 16 {𝑧} ⊆ (𝑦 ∪ {𝑧})
105 resmpt 5991 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘)))
106104, 105ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))
107103, 106eqtrdi 2792 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘)))
108107oveq2d 7373 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))))
109 cmnmnd 19579 . . . . . . . . . . . . . . 15 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
11057, 109syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝐺 ∈ Mnd)
111 vex 3449 . . . . . . . . . . . . . . 15 𝑧 ∈ V
112111a1i 11 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝑧 ∈ V)
113 vsnid 4623 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑧}
114 elun2 4137 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
115113, 114mp1i 13 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
11664, 115ffvelcdmd 7036 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝑤𝑧) ∈ 𝐵)
117 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑤𝑘) = (𝑤𝑧))
11841, 117gsumsn 19731 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑧 ∈ V ∧ (𝑤𝑧) ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))) = (𝑤𝑧))
119110, 112, 116, 118syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))) = (𝑤𝑧))
120108, 119eqtrd 2776 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝑤𝑧))
121120mpteq2dva 5205 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) = (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)))
12280mpteq1d 5200 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) = (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)))
123113, 114mp1i 13 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
12488, 76ptpjcn 22962 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
12561, 85, 123, 124syl3anc 1371 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
126122, 125eqeltrd 2838 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
127 fvconst2g 7151 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽)
12883, 123, 127syl2anc 584 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽)
129128oveq2d 7373 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
130126, 129eleqtrd 2840 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
131121, 130eqeltrd 2838 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
13240, 56, 74, 78, 101, 131cnmpt1plusg 23438 . . . . . . . . 9 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
13373, 132eqeltrd 2838 . . . . . . . 8 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
1341333expia 1121 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))
135134expcom 414 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → ((𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
136135a2d 29 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
1379, 16, 23, 30, 53, 136findcard2s 9109 . . . 4 (𝐴 ∈ Fin → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
138137com12 32 . . 3 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝐴 ∈ Fin → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
1391383impia 1117 . 2 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
14042, 82syl 17 . . . . 5 (𝐺 ∈ TopMnd → 𝐽 ∈ Top)
141 xkopt 23006 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
142140, 141sylan 580 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1431423adant1 1130 . . 3 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
144143oveq1d 7372 . 2 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → ((𝐽ko 𝒫 𝐴) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
145139, 144eleqtrrd 2841 1 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵m 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽ko 𝒫 𝐴) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865  cmpt 5188   × cxp 5631  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  +gcplusg 17133  TopOpenctopn 17303  tcpt 17320  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  CMndccmn 19562  Topctop 22242  TopOnctopon 22259   Cn ccn 22575  ko cxko 22912  TopMndctmd 23421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-rest 17304  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-mre 17466  df-mrc 17467  df-acs 17469  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-xko 22914  df-tmd 23423
This theorem is referenced by:  tmdgsum2  23447
  Copyright terms: Public domain W3C validator