MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum Structured version   Visualization version   GIF version

Theorem tmdgsum 22178
Description: In a topological monoid, the group sum operation is a continuous function from the function space to the base topology. This theorem is not true when 𝐴 is infinite, because in this case for any basic open set of the domain one of the factors will be the whole space, so by varying the value of the functions to sum at this index, one can achieve any desired sum. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tmdgsum ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝐵   𝑥,𝐺

Proof of Theorem tmdgsum
Dummy variables 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6850 . . . . . . . 8 (𝑤 = ∅ → (𝐵𝑚 𝑤) = (𝐵𝑚 ∅))
21mpteq1d 4897 . . . . . . 7 (𝑤 = ∅ → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵𝑚 ∅) ↦ (𝐺 Σg 𝑥)))
3 xpeq1 5291 . . . . . . . . . 10 (𝑤 = ∅ → (𝑤 × {𝐽}) = (∅ × {𝐽}))
4 0xp 5369 . . . . . . . . . 10 (∅ × {𝐽}) = ∅
53, 4syl6eq 2815 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 × {𝐽}) = ∅)
65fveq2d 6379 . . . . . . . 8 (𝑤 = ∅ → (∏t‘(𝑤 × {𝐽})) = (∏t‘∅))
76oveq1d 6857 . . . . . . 7 (𝑤 = ∅ → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘∅) Cn 𝐽))
82, 7eleq12d 2838 . . . . . 6 (𝑤 = ∅ → ((𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵𝑚 ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽)))
98imbi2d 331 . . . . 5 (𝑤 = ∅ → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽))))
10 oveq2 6850 . . . . . . . 8 (𝑤 = 𝑦 → (𝐵𝑚 𝑤) = (𝐵𝑚 𝑦))
1110mpteq1d 4897 . . . . . . 7 (𝑤 = 𝑦 → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)))
12 xpeq1 5291 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 × {𝐽}) = (𝑦 × {𝐽}))
1312fveq2d 6379 . . . . . . . 8 (𝑤 = 𝑦 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝑦 × {𝐽})))
1413oveq1d 6857 . . . . . . 7 (𝑤 = 𝑦 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))
1511, 14eleq12d 2838 . . . . . 6 (𝑤 = 𝑦 → ((𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)))
1615imbi2d 331 . . . . 5 (𝑤 = 𝑦 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))))
17 oveq2 6850 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐵𝑚 𝑤) = (𝐵𝑚 (𝑦 ∪ {𝑧})))
1817mpteq1d 4897 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)))
19 xpeq1 5291 . . . . . . . . 9 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 × {𝐽}) = ((𝑦 ∪ {𝑧}) × {𝐽}))
2019fveq2d 6379 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → (∏t‘(𝑤 × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
2120oveq1d 6857 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
2218, 21eleq12d 2838 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))
2322imbi2d 331 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
24 oveq2 6850 . . . . . . . 8 (𝑤 = 𝐴 → (𝐵𝑚 𝑤) = (𝐵𝑚 𝐴))
2524mpteq1d 4897 . . . . . . 7 (𝑤 = 𝐴 → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)))
26 xpeq1 5291 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑤 × {𝐽}) = (𝐴 × {𝐽}))
2726fveq2d 6379 . . . . . . . 8 (𝑤 = 𝐴 → (∏t‘(𝑤 × {𝐽})) = (∏t‘(𝐴 × {𝐽})))
2827oveq1d 6857 . . . . . . 7 (𝑤 = 𝐴 → ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
2925, 28eleq12d 2838 . . . . . 6 (𝑤 = 𝐴 → ((𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽) ↔ (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
3029imbi2d 331 . . . . 5 (𝑤 = 𝐴 → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑤) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑤 × {𝐽})) Cn 𝐽)) ↔ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))))
31 elmapfn 8083 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 ∅) → 𝑥 Fn ∅)
32 fn0 6189 . . . . . . . . . 10 (𝑥 Fn ∅ ↔ 𝑥 = ∅)
3331, 32sylib 209 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑚 ∅) → 𝑥 = ∅)
3433oveq2d 6858 . . . . . . . 8 (𝑥 ∈ (𝐵𝑚 ∅) → (𝐺 Σg 𝑥) = (𝐺 Σg ∅))
35 eqid 2765 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
3635gsum0 17546 . . . . . . . 8 (𝐺 Σg ∅) = (0g𝐺)
3734, 36syl6eq 2815 . . . . . . 7 (𝑥 ∈ (𝐵𝑚 ∅) → (𝐺 Σg 𝑥) = (0g𝐺))
3837mpteq2ia 4899 . . . . . 6 (𝑥 ∈ (𝐵𝑚 ∅) ↦ (𝐺 Σg 𝑥)) = (𝑥 ∈ (𝐵𝑚 ∅) ↦ (0g𝐺))
39 0ex 4950 . . . . . . . 8 ∅ ∈ V
40 tmdgsum.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
41 tmdgsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
4240, 41tmdtopon 22164 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
4342adantl 473 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐽 ∈ (TopOn‘𝐵))
444fveq2i 6378 . . . . . . . . . 10 (∏t‘(∅ × {𝐽})) = (∏t‘∅)
4544eqcomi 2774 . . . . . . . . 9 (∏t‘∅) = (∏t‘(∅ × {𝐽}))
4645pttoponconst 21680 . . . . . . . 8 ((∅ ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘∅) ∈ (TopOn‘(𝐵𝑚 ∅)))
4739, 43, 46sylancr 581 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (∏t‘∅) ∈ (TopOn‘(𝐵𝑚 ∅)))
48 tmdmnd 22158 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
4948adantl 473 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → 𝐺 ∈ Mnd)
5041, 35mndidcl 17576 . . . . . . . 8 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
5149, 50syl 17 . . . . . . 7 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (0g𝐺) ∈ 𝐵)
5247, 43, 51cnmptc 21745 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 ∅) ↦ (0g𝐺)) ∈ ((∏t‘∅) Cn 𝐽))
5338, 52syl5eqel 2848 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 ∅) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘∅) Cn 𝐽))
54 oveq2 6850 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑤))
5554cbvmptv 4909 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤))
56 eqid 2765 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
57 simpl1l 1293 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝐺 ∈ CMnd)
58 simp2l 1256 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ∈ Fin)
59 snfi 8245 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
60 unfi 8434 . . . . . . . . . . . . . 14 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
6158, 59, 60sylancl 580 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑦 ∪ {𝑧}) ∈ Fin)
6261adantr 472 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) ∈ Fin)
63 elmapi 8082 . . . . . . . . . . . . 13 (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵)
6463adantl 473 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝑤:(𝑦 ∪ {𝑧})⟶𝐵)
65 fvexd 6390 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (0g𝐺) ∈ V)
6664, 62, 65fdmfifsupp 8492 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝑤 finSupp (0g𝐺))
67 simpl2r 1299 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → ¬ 𝑧𝑦)
68 disjsn 4402 . . . . . . . . . . . . 13 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
6967, 68sylibr 225 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑦 ∩ {𝑧}) = ∅)
70 eqidd 2766 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
7141, 35, 56, 57, 62, 64, 66, 69, 70gsumsplit 18594 . . . . . . . . . . 11 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝐺 Σg 𝑤) = ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧}))))
7271mpteq2dva 4903 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑤)) = (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))))
7355, 72syl5eq 2811 . . . . . . . . 9 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) = (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))))
74 simp1r 1255 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐺 ∈ TopMnd)
7574, 42syl 17 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵))
76 eqid 2765 . . . . . . . . . . . 12 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))
7776pttoponconst 21680 . . . . . . . . . . 11 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵𝑚 (𝑦 ∪ {𝑧}))))
7861, 75, 77syl2anc 579 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵𝑚 (𝑦 ∪ {𝑧}))))
79 toponuni 20998 . . . . . . . . . . . . . 14 ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ∈ (TopOn‘(𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝐵𝑚 (𝑦 ∪ {𝑧})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
8078, 79syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝐵𝑚 (𝑦 ∪ {𝑧})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})))
8180mpteq1d 4897 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑦)) = (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)))
82 topontop 20997 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
8374, 42, 823syl 18 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝐽 ∈ Top)
84 fconst6g 6276 . . . . . . . . . . . . . 14 (𝐽 ∈ Top → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top)
8583, 84syl 17 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top)
86 ssun1 3938 . . . . . . . . . . . . . 14 𝑦 ⊆ (𝑦 ∪ {𝑧})
8786a1i 11 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑦 ⊆ (𝑦 ∪ {𝑧}))
88 eqid 2765 . . . . . . . . . . . . . 14 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) = (∏t‘((𝑦 ∪ {𝑧}) × {𝐽}))
89 xpssres 5608 . . . . . . . . . . . . . . . . 17 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽}))
9086, 89ax-mp 5 . . . . . . . . . . . . . . . 16 (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦) = (𝑦 × {𝐽})
9190eqcomi 2774 . . . . . . . . . . . . . . 15 (𝑦 × {𝐽}) = (((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦)
9291fveq2i 6378 . . . . . . . . . . . . . 14 (∏t‘(𝑦 × {𝐽})) = (∏t‘(((𝑦 ∪ {𝑧}) × {𝐽}) ↾ 𝑦))
9388, 76, 92ptrescn 21722 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
9461, 85, 87, 93syl3anc 1490 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
9581, 94eqeltrd 2844 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑦)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (∏t‘(𝑦 × {𝐽}))))
96 eqid 2765 . . . . . . . . . . . . 13 (∏t‘(𝑦 × {𝐽})) = (∏t‘(𝑦 × {𝐽}))
9796pttoponconst 21680 . . . . . . . . . . . 12 ((𝑦 ∈ Fin ∧ 𝐽 ∈ (TopOn‘𝐵)) → (∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵𝑚 𝑦)))
9858, 75, 97syl2anc 579 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (∏t‘(𝑦 × {𝐽})) ∈ (TopOn‘(𝐵𝑚 𝑦)))
99 simp3 1168 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽))
100 oveq2 6850 . . . . . . . . . . 11 (𝑥 = (𝑤𝑦) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑤𝑦)))
10178, 95, 98, 99, 100cnmpt11 21746 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤𝑦))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
10264feqmptd 6438 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝑤 = (𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)))
103102reseq1d 5564 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}))
104 ssun2 3939 . . . . . . . . . . . . . . . 16 {𝑧} ⊆ (𝑦 ∪ {𝑧})
105 resmpt 5626 . . . . . . . . . . . . . . . 16 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘)))
106104, 105ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (𝑦 ∪ {𝑧}) ↦ (𝑤𝑘)) ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))
107103, 106syl6eq 2815 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑤 ↾ {𝑧}) = (𝑘 ∈ {𝑧} ↦ (𝑤𝑘)))
108107oveq2d 6858 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))))
109 cmnmnd 18474 . . . . . . . . . . . . . . 15 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
11057, 109syl 17 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝐺 ∈ Mnd)
111 vex 3353 . . . . . . . . . . . . . . 15 𝑧 ∈ V
112111a1i 11 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝑧 ∈ V)
113 vsnid 4367 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑧}
114 elun2 3943 . . . . . . . . . . . . . . . 16 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
115113, 114mp1i 13 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
11664, 115ffvelrnd 6550 . . . . . . . . . . . . . 14 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝑤𝑧) ∈ 𝐵)
117 fveq2 6375 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑤𝑘) = (𝑤𝑧))
11841, 117gsumsn 18620 . . . . . . . . . . . . . 14 ((𝐺 ∈ Mnd ∧ 𝑧 ∈ V ∧ (𝑤𝑧) ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))) = (𝑤𝑧))
119110, 112, 116, 118syl3anc 1490 . . . . . . . . . . . . 13 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑘 ∈ {𝑧} ↦ (𝑤𝑘))) = (𝑤𝑧))
120108, 119eqtrd 2799 . . . . . . . . . . . 12 ((((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) ∧ 𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧}))) → (𝐺 Σg (𝑤 ↾ {𝑧})) = (𝑤𝑧))
121120mpteq2dva 4903 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) = (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)))
12280mpteq1d 4897 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) = (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)))
123113, 114mp1i 13 . . . . . . . . . . . . . 14 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → 𝑧 ∈ (𝑦 ∪ {𝑧}))
12488, 76ptpjcn 21694 . . . . . . . . . . . . . 14 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ ((𝑦 ∪ {𝑧}) × {𝐽}):(𝑦 ∪ {𝑧})⟶Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
12561, 85, 123, 124syl3anc 1490 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 (∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
126122, 125eqeltrd 2844 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)))
127 fvconst2g 6660 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽)
12883, 123, 127syl2anc 579 . . . . . . . . . . . . 13 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧) = 𝐽)
129128oveq2d 6858 . . . . . . . . . . . 12 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn (((𝑦 ∪ {𝑧}) × {𝐽})‘𝑧)) = ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
130126, 129eleqtrd 2846 . . . . . . . . . . 11 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝑤𝑧)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
131121, 130eqeltrd 2844 . . . . . . . . . 10 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg (𝑤 ↾ {𝑧}))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
13240, 56, 74, 78, 101, 131cnmpt1plusg 22170 . . . . . . . . 9 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑤 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ ((𝐺 Σg (𝑤𝑦))(+g𝐺)(𝐺 Σg (𝑤 ↾ {𝑧})))) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
13373, 132eqeltrd 2844 . . . . . . . 8 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))
1341333expia 1150 . . . . . . 7 (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽)))
135134expcom 402 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → ((𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
136135a2d 29 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝑦) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝑦 × {𝐽})) Cn 𝐽)) → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 (𝑦 ∪ {𝑧})) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘((𝑦 ∪ {𝑧}) × {𝐽})) Cn 𝐽))))
1379, 16, 23, 30, 53, 136findcard2s 8408 . . . 4 (𝐴 ∈ Fin → ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
138137com12 32 . . 3 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd) → (𝐴 ∈ Fin → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽)))
1391383impia 1145 . 2 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
14042, 82syl 17 . . . . 5 (𝐺 ∈ TopMnd → 𝐽 ∈ Top)
141 xkopt 21738 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
142140, 141sylan 575 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1431423adant1 1160 . . 3 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
144143oveq1d 6857 . 2 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽) = ((∏t‘(𝐴 × {𝐽})) Cn 𝐽))
145139, 144eleqtrrd 2847 1 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑥 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑥)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  cun 3730  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334   cuni 4594  cmpt 4888   × cxp 5275  cres 5279   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  Fincfn 8160  Basecbs 16132  +gcplusg 16216  TopOpenctopn 16350  tcpt 16367  0gc0g 16368   Σg cgsu 16369  Mndcmnd 17562  CMndccmn 18459  Topctop 20977  TopOnctopon 20994   Cn ccn 21308   ^ko cxko 21644  TopMndctmd 22153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-rest 16351  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-mre 16514  df-mrc 16515  df-acs 16517  df-plusf 17509  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-cmp 21470  df-tx 21645  df-xko 21646  df-tmd 22155
This theorem is referenced by:  tmdgsum2  22179
  Copyright terms: Public domain W3C validator