![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdtopon | Structured version Visualization version GIF version |
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
tmdtopon | ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdtps 24071 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 22927 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 Basecbs 17213 TopOpenctopn 17436 TopOnctopon 22903 TopSpctps 22925 TopMndctmd 24065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-top 22887 df-topon 22904 df-topsp 22926 df-tmd 24067 |
This theorem is referenced by: cnmpt1plusg 24082 cnmpt2plusg 24083 tmdcn2 24084 tmdmulg 24087 tmdgsum 24090 tmdgsum2 24091 oppgtmd 24092 tmdlactcn 24097 submtmd 24099 ghmcnp 24110 prdstgpd 24120 tsmsxp 24150 mhmhmeotmd 33742 |
Copyright terms: Public domain | W3C validator |