MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtopon Structured version   Visualization version   GIF version

Theorem tmdtopon 24024
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tmdtopon (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tmdtopon
StepHypRef Expression
1 tmdtps 24019 . 2 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 22877 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 1 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  Basecbs 17233  TopOpenctopn 17440  TopOnctopon 22853  TopSpctps 22875  TopMndctmd 24013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-top 22837  df-topon 22854  df-topsp 22876  df-tmd 24015
This theorem is referenced by:  cnmpt1plusg  24030  cnmpt2plusg  24031  tmdcn2  24032  tmdmulg  24035  tmdgsum  24038  tmdgsum2  24039  oppgtmd  24040  tmdlactcn  24045  submtmd  24047  ghmcnp  24058  prdstgpd  24068  tsmsxp  24098  mhmhmeotmd  33963
  Copyright terms: Public domain W3C validator