![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tmdtopon | Structured version Visualization version GIF version |
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
tmdtopon | ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdtps 24100 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 22956 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 1, 4 | sylib 218 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Basecbs 17245 TopOpenctopn 17468 TopOnctopon 22932 TopSpctps 22954 TopMndctmd 24094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-top 22916 df-topon 22933 df-topsp 22955 df-tmd 24096 |
This theorem is referenced by: cnmpt1plusg 24111 cnmpt2plusg 24112 tmdcn2 24113 tmdmulg 24116 tmdgsum 24119 tmdgsum2 24120 oppgtmd 24121 tmdlactcn 24126 submtmd 24128 ghmcnp 24139 prdstgpd 24149 tsmsxp 24179 mhmhmeotmd 33888 |
Copyright terms: Public domain | W3C validator |