MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdtopon Structured version   Visualization version   GIF version

Theorem tmdtopon 24105
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
tgpcn.j 𝐽 = (TopOpen‘𝐺)
tgptopon.x 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
tmdtopon (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem tmdtopon
StepHypRef Expression
1 tmdtps 24100 . 2 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
2 tgptopon.x . . 3 𝑋 = (Base‘𝐺)
3 tgpcn.j . . 3 𝐽 = (TopOpen‘𝐺)
42, 3istps 22956 . 2 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
51, 4sylib 218 1 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  Basecbs 17245  TopOpenctopn 17468  TopOnctopon 22932  TopSpctps 22954  TopMndctmd 24094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-top 22916  df-topon 22933  df-topsp 22955  df-tmd 24096
This theorem is referenced by:  cnmpt1plusg  24111  cnmpt2plusg  24112  tmdcn2  24113  tmdmulg  24116  tmdgsum  24119  tmdgsum2  24120  oppgtmd  24121  tmdlactcn  24126  submtmd  24128  ghmcnp  24139  prdstgpd  24149  tsmsxp  24179  mhmhmeotmd  33888
  Copyright terms: Public domain W3C validator