Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdtopon | Structured version Visualization version GIF version |
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
tmdtopon | ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdtps 23135 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 21991 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 TopOpenctopn 17049 TopOnctopon 21967 TopSpctps 21989 TopMndctmd 23129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-top 21951 df-topon 21968 df-topsp 21990 df-tmd 23131 |
This theorem is referenced by: cnmpt1plusg 23146 cnmpt2plusg 23147 tmdcn2 23148 tmdmulg 23151 tmdgsum 23154 tmdgsum2 23155 oppgtmd 23156 tmdlactcn 23161 submtmd 23163 ghmcnp 23174 prdstgpd 23184 tsmsxp 23214 mhmhmeotmd 31779 |
Copyright terms: Public domain | W3C validator |