Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmdtopon | Structured version Visualization version GIF version |
Description: The topology of a topological monoid. (Contributed by Mario Carneiro, 27-Jun-2014.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
tgpcn.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgptopon.x | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
tmdtopon | ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdtps 23298 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) | |
2 | tgptopon.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | tgpcn.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐺) | |
4 | 2, 3 | istps 22154 | . 2 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋)) |
5 | 1, 4 | sylib 217 | 1 ⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 Basecbs 16979 TopOpenctopn 17199 TopOnctopon 22130 TopSpctps 22152 TopMndctmd 23292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-iota 6415 df-fun 6465 df-fv 6471 df-ov 7316 df-top 22114 df-topon 22131 df-topsp 22153 df-tmd 23294 |
This theorem is referenced by: cnmpt1plusg 23309 cnmpt2plusg 23310 tmdcn2 23311 tmdmulg 23314 tmdgsum 23317 tmdgsum2 23318 oppgtmd 23319 tmdlactcn 23324 submtmd 23326 ghmcnp 23337 prdstgpd 23347 tsmsxp 23377 mhmhmeotmd 31983 |
Copyright terms: Public domain | W3C validator |