MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Visualization version   GIF version

Theorem tsmssplit 22760
Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b 𝐵 = (Base‘𝐺)
tsmssplit.p + = (+g𝐺)
tsmssplit.1 (𝜑𝐺 ∈ CMnd)
tsmssplit.2 (𝜑𝐺 ∈ TopMnd)
tsmssplit.a (𝜑𝐴𝑉)
tsmssplit.f (𝜑𝐹:𝐴𝐵)
tsmssplit.x (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
tsmssplit.y (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
tsmssplit.i (𝜑 → (𝐶𝐷) = ∅)
tsmssplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
tsmssplit (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmssplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3 𝐵 = (Base‘𝐺)
2 tsmssplit.p . . 3 + = (+g𝐺)
3 tsmssplit.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssplit.2 . . 3 (𝜑𝐺 ∈ TopMnd)
5 tsmssplit.a . . 3 (𝜑𝐴𝑉)
6 tsmssplit.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 6851 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
8 cmnmnd 18922 . . . . . . . 8 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
93, 8syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
10 eqid 2821 . . . . . . . 8 (0g𝐺) = (0g𝐺)
111, 10mndidcl 17926 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
1312adantr 483 . . . . 5 ((𝜑𝑘𝐴) → (0g𝐺) ∈ 𝐵)
147, 13ifcld 4512 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1514fmpttd 6879 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
167, 13ifcld 4512 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1716fmpttd 6879 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
18 tsmssplit.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
196feqmptd 6733 . . . . . . . 8 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
2019reseq1d 5852 . . . . . . 7 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
21 ssun1 4148 . . . . . . . . 9 𝐶 ⊆ (𝐶𝐷)
22 tsmssplit.u . . . . . . . . 9 (𝜑𝐴 = (𝐶𝐷))
2321, 22sseqtrrid 4020 . . . . . . . 8 (𝜑𝐶𝐴)
24 iftrue 4473 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
2524mpteq2ia 5157 . . . . . . . . 9 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐶 ↦ (𝐹𝑘))
26 resmpt 5905 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
27 resmpt 5905 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
2825, 26, 273eqtr4a 2882 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
2923, 28syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3020, 29eqtr4d 2859 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶))
3130oveq2d 7172 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)))
32 tmdtps 22684 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
334, 32syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
34 eldifn 4104 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
3534adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
3635iffalsed 4478 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
3736, 5suppss2 7864 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐶)
381, 10, 3, 33, 5, 15, 37tsmsres 22752 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
3931, 38eqtrd 2856 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4018, 39eleqtrd 2915 . . 3 (𝜑𝑋 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
41 tsmssplit.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
4219reseq1d 5852 . . . . . . 7 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
43 ssun2 4149 . . . . . . . . 9 𝐷 ⊆ (𝐶𝐷)
4443, 22sseqtrrid 4020 . . . . . . . 8 (𝜑𝐷𝐴)
45 iftrue 4473 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
4645mpteq2ia 5157 . . . . . . . . 9 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐷 ↦ (𝐹𝑘))
47 resmpt 5905 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
48 resmpt 5905 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
4946, 47, 483eqtr4a 2882 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5044, 49syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5142, 50eqtr4d 2859 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷))
5251oveq2d 7172 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)))
53 eldifn 4104 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
5453adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
5554iffalsed 4478 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
5655, 5suppss2 7864 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐷)
571, 10, 3, 33, 5, 17, 56tsmsres 22752 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5852, 57eqtrd 2856 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5941, 58eleqtrd 2915 . . 3 (𝜑𝑌 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
601, 2, 3, 4, 5, 15, 17, 40, 59tsmsadd 22755 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
6124adantl 484 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
62 tsmssplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
63 noel 4296 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
64 eleq2 2901 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
6563, 64mtbiri 329 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
6766adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
68 elin 4169 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
6967, 68sylnib 330 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
70 imnan 402 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
7169, 70sylibr 236 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
7271imp 409 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
7372iffalsed 4478 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
7461, 73oveq12d 7174 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((𝐹𝑘) + (0g𝐺)))
751, 2, 10mndrid 17932 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
769, 7, 75syl2an2r 683 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7776adantr 483 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7874, 77eqtrd 2856 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
7971con2d 136 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
8079imp 409 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
8180iffalsed 4478 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
8245adantl 484 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
8381, 82oveq12d 7174 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((0g𝐺) + (𝐹𝑘)))
841, 2, 10mndlid 17931 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
859, 7, 84syl2an2r 683 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8685adantr 483 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8783, 86eqtrd 2856 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
8822eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
89 elun 4125 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
9088, 89syl6bb 289 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
9190biimpa 479 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
9278, 87, 91mpjaodan 955 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9392mpteq2dva 5161 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (𝐹𝑘)))
9419, 93eqtr4d 2859 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
95 eqidd 2822 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
96 eqidd 2822 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
975, 14, 16, 95, 96offval2 7426 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9894, 97eqtr4d 2859 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9998oveq2d 7172 . 2 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
10060, 99eleqtrrd 2916 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  ifcif 4467  cmpt 5146  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  CMndccmn 18906  TopSpctps 21540  TopMndctmd 22678   tsums ctsu 22734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-topgen 16717  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-cntz 18447  df-cmn 18908  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-ntr 21628  df-nei 21706  df-cn 21835  df-cnp 21836  df-tx 22170  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-tmd 22680  df-tsms 22735
This theorem is referenced by:  esumsplit  31312
  Copyright terms: Public domain W3C validator