MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Visualization version   GIF version

Theorem tsmssplit 23211
Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b 𝐵 = (Base‘𝐺)
tsmssplit.p + = (+g𝐺)
tsmssplit.1 (𝜑𝐺 ∈ CMnd)
tsmssplit.2 (𝜑𝐺 ∈ TopMnd)
tsmssplit.a (𝜑𝐴𝑉)
tsmssplit.f (𝜑𝐹:𝐴𝐵)
tsmssplit.x (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
tsmssplit.y (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
tsmssplit.i (𝜑 → (𝐶𝐷) = ∅)
tsmssplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
tsmssplit (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmssplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3 𝐵 = (Base‘𝐺)
2 tsmssplit.p . . 3 + = (+g𝐺)
3 tsmssplit.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssplit.2 . . 3 (𝜑𝐺 ∈ TopMnd)
5 tsmssplit.a . . 3 (𝜑𝐴𝑉)
6 tsmssplit.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
76ffvelrnda 6943 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
8 cmnmnd 19317 . . . . . . . 8 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
93, 8syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
10 eqid 2738 . . . . . . . 8 (0g𝐺) = (0g𝐺)
111, 10mndidcl 18315 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
1312adantr 480 . . . . 5 ((𝜑𝑘𝐴) → (0g𝐺) ∈ 𝐵)
147, 13ifcld 4502 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1514fmpttd 6971 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
167, 13ifcld 4502 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1716fmpttd 6971 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
18 tsmssplit.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
196feqmptd 6819 . . . . . . . 8 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
2019reseq1d 5879 . . . . . . 7 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
21 ssun1 4102 . . . . . . . . 9 𝐶 ⊆ (𝐶𝐷)
22 tsmssplit.u . . . . . . . . 9 (𝜑𝐴 = (𝐶𝐷))
2321, 22sseqtrrid 3970 . . . . . . . 8 (𝜑𝐶𝐴)
24 iftrue 4462 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
2524mpteq2ia 5173 . . . . . . . . 9 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐶 ↦ (𝐹𝑘))
26 resmpt 5934 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
27 resmpt 5934 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
2825, 26, 273eqtr4a 2805 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
2923, 28syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3020, 29eqtr4d 2781 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶))
3130oveq2d 7271 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)))
32 tmdtps 23135 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
334, 32syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
34 eldifn 4058 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
3534adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
3635iffalsed 4467 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
3736, 5suppss2 7987 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐶)
381, 10, 3, 33, 5, 15, 37tsmsres 23203 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
3931, 38eqtrd 2778 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4018, 39eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
41 tsmssplit.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
4219reseq1d 5879 . . . . . . 7 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
43 ssun2 4103 . . . . . . . . 9 𝐷 ⊆ (𝐶𝐷)
4443, 22sseqtrrid 3970 . . . . . . . 8 (𝜑𝐷𝐴)
45 iftrue 4462 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
4645mpteq2ia 5173 . . . . . . . . 9 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐷 ↦ (𝐹𝑘))
47 resmpt 5934 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
48 resmpt 5934 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
4946, 47, 483eqtr4a 2805 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5044, 49syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5142, 50eqtr4d 2781 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷))
5251oveq2d 7271 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)))
53 eldifn 4058 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
5453adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
5554iffalsed 4467 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
5655, 5suppss2 7987 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐷)
571, 10, 3, 33, 5, 17, 56tsmsres 23203 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5852, 57eqtrd 2778 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5941, 58eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
601, 2, 3, 4, 5, 15, 17, 40, 59tsmsadd 23206 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
6124adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
62 tsmssplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
63 noel 4261 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
64 eleq2 2827 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
6563, 64mtbiri 326 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
6766adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
68 elin 3899 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
6967, 68sylnib 327 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
70 imnan 399 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
7169, 70sylibr 233 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
7271imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
7372iffalsed 4467 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
7461, 73oveq12d 7273 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((𝐹𝑘) + (0g𝐺)))
751, 2, 10mndrid 18321 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
769, 7, 75syl2an2r 681 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7776adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7874, 77eqtrd 2778 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
7971con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
8079imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
8180iffalsed 4467 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
8245adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
8381, 82oveq12d 7273 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((0g𝐺) + (𝐹𝑘)))
841, 2, 10mndlid 18320 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
859, 7, 84syl2an2r 681 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8685adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8783, 86eqtrd 2778 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
8822eleq2d 2824 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
89 elun 4079 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
9088, 89bitrdi 286 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
9190biimpa 476 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
9278, 87, 91mpjaodan 955 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9392mpteq2dva 5170 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (𝐹𝑘)))
9419, 93eqtr4d 2781 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
95 eqidd 2739 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
96 eqidd 2739 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
975, 14, 16, 95, 96offval2 7531 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9894, 97eqtr4d 2781 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9998oveq2d 7271 . 2 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
10060, 99eleqtrrd 2842 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  cmpt 5153  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  CMndccmn 19301  TopSpctps 21989  TopMndctmd 23129   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-topgen 17071  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cnp 22287  df-tx 22621  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tsms 23186
This theorem is referenced by:  esumsplit  31921
  Copyright terms: Public domain W3C validator