MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Visualization version   GIF version

Theorem tsmssplit 24045
Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b 𝐵 = (Base‘𝐺)
tsmssplit.p + = (+g𝐺)
tsmssplit.1 (𝜑𝐺 ∈ CMnd)
tsmssplit.2 (𝜑𝐺 ∈ TopMnd)
tsmssplit.a (𝜑𝐴𝑉)
tsmssplit.f (𝜑𝐹:𝐴𝐵)
tsmssplit.x (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
tsmssplit.y (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
tsmssplit.i (𝜑 → (𝐶𝐷) = ∅)
tsmssplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
tsmssplit (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))

Proof of Theorem tsmssplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3 𝐵 = (Base‘𝐺)
2 tsmssplit.p . . 3 + = (+g𝐺)
3 tsmssplit.1 . . 3 (𝜑𝐺 ∈ CMnd)
4 tsmssplit.2 . . 3 (𝜑𝐺 ∈ TopMnd)
5 tsmssplit.a . . 3 (𝜑𝐴𝑉)
6 tsmssplit.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
76ffvelcdmda 7058 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
8 cmnmnd 19733 . . . . . . . 8 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
93, 8syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
10 eqid 2730 . . . . . . . 8 (0g𝐺) = (0g𝐺)
111, 10mndidcl 18682 . . . . . . 7 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
129, 11syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
1312adantr 480 . . . . 5 ((𝜑𝑘𝐴) → (0g𝐺) ∈ 𝐵)
147, 13ifcld 4537 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1514fmpttd 7089 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
167, 13ifcld 4537 . . . 4 ((𝜑𝑘𝐴) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) ∈ 𝐵)
1716fmpttd 7089 . . 3 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))):𝐴𝐵)
18 tsmssplit.x . . . 4 (𝜑𝑋 ∈ (𝐺 tsums (𝐹𝐶)))
196feqmptd 6931 . . . . . . . 8 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
2019reseq1d 5951 . . . . . . 7 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
21 ssun1 4143 . . . . . . . . 9 𝐶 ⊆ (𝐶𝐷)
22 tsmssplit.u . . . . . . . . 9 (𝜑𝐴 = (𝐶𝐷))
2321, 22sseqtrrid 3992 . . . . . . . 8 (𝜑𝐶𝐴)
24 iftrue 4496 . . . . . . . . . 10 (𝑘𝐶 → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
2524mpteq2ia 5204 . . . . . . . . 9 (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐶 ↦ (𝐹𝑘))
26 resmpt 6010 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = (𝑘𝐶 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
27 resmpt 6010 . . . . . . . . 9 (𝐶𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶) = (𝑘𝐶 ↦ (𝐹𝑘)))
2825, 26, 273eqtr4a 2791 . . . . . . . 8 (𝐶𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
2923, 28syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐶))
3020, 29eqtr4d 2768 . . . . . 6 (𝜑 → (𝐹𝐶) = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶))
3130oveq2d 7405 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)))
32 tmdtps 23969 . . . . . . 7 (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp)
334, 32syl 17 . . . . . 6 (𝜑𝐺 ∈ TopSp)
34 eldifn 4097 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐶) → ¬ 𝑘𝐶)
3534adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐶)) → ¬ 𝑘𝐶)
3635iffalsed 4501 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐶)) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
3736, 5suppss2 8181 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐶)
381, 10, 3, 33, 5, 15, 37tsmsres 24037 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ↾ 𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
3931, 38eqtrd 2765 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐶)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
4018, 39eleqtrd 2831 . . 3 (𝜑𝑋 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺)))))
41 tsmssplit.y . . . 4 (𝜑𝑌 ∈ (𝐺 tsums (𝐹𝐷)))
4219reseq1d 5951 . . . . . . 7 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
43 ssun2 4144 . . . . . . . . 9 𝐷 ⊆ (𝐶𝐷)
4443, 22sseqtrrid 3992 . . . . . . . 8 (𝜑𝐷𝐴)
45 iftrue 4496 . . . . . . . . . 10 (𝑘𝐷 → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
4645mpteq2ia 5204 . . . . . . . . 9 (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐷 ↦ (𝐹𝑘))
47 resmpt 6010 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = (𝑘𝐷 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
48 resmpt 6010 . . . . . . . . 9 (𝐷𝐴 → ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷) = (𝑘𝐷 ↦ (𝐹𝑘)))
4946, 47, 483eqtr4a 2791 . . . . . . . 8 (𝐷𝐴 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5044, 49syl 17 . . . . . . 7 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷) = ((𝑘𝐴 ↦ (𝐹𝑘)) ↾ 𝐷))
5142, 50eqtr4d 2768 . . . . . 6 (𝜑 → (𝐹𝐷) = ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷))
5251oveq2d 7405 . . . . 5 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)))
53 eldifn 4097 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐷) → ¬ 𝑘𝐷)
5453adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐷)) → ¬ 𝑘𝐷)
5554iffalsed 4501 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐷)) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
5655, 5suppss2 8181 . . . . . 6 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) supp (0g𝐺)) ⊆ 𝐷)
571, 10, 3, 33, 5, 17, 56tsmsres 24037 . . . . 5 (𝜑 → (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) ↾ 𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5852, 57eqtrd 2765 . . . 4 (𝜑 → (𝐺 tsums (𝐹𝐷)) = (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
5941, 58eleqtrd 2831 . . 3 (𝜑𝑌 ∈ (𝐺 tsums (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
601, 2, 3, 4, 5, 15, 17, 40, 59tsmsadd 24040 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
6124adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
62 tsmssplit.i . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝐷) = ∅)
63 noel 4303 . . . . . . . . . . . . . . . 16 ¬ 𝑘 ∈ ∅
64 eleq2 2818 . . . . . . . . . . . . . . . 16 ((𝐶𝐷) = ∅ → (𝑘 ∈ (𝐶𝐷) ↔ 𝑘 ∈ ∅))
6563, 64mtbiri 327 . . . . . . . . . . . . . . 15 ((𝐶𝐷) = ∅ → ¬ 𝑘 ∈ (𝐶𝐷))
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑘 ∈ (𝐶𝐷))
6766adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ¬ 𝑘 ∈ (𝐶𝐷))
68 elin 3932 . . . . . . . . . . . . 13 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
6967, 68sylnib 328 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ¬ (𝑘𝐶𝑘𝐷))
70 imnan 399 . . . . . . . . . . . 12 ((𝑘𝐶 → ¬ 𝑘𝐷) ↔ ¬ (𝑘𝐶𝑘𝐷))
7169, 70sylibr 234 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐶 → ¬ 𝑘𝐷))
7271imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ¬ 𝑘𝐷)
7372iffalsed 4501 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
7461, 73oveq12d 7407 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((𝐹𝑘) + (0g𝐺)))
751, 2, 10mndrid 18688 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
769, 7, 75syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7776adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → ((𝐹𝑘) + (0g𝐺)) = (𝐹𝑘))
7874, 77eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐶) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
7971con2d 134 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑘𝐷 → ¬ 𝑘𝐶))
8079imp 406 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ¬ 𝑘𝐶)
8180iffalsed 4501 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) = (0g𝐺))
8245adantl 481 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → if(𝑘𝐷, (𝐹𝑘), (0g𝐺)) = (𝐹𝑘))
8381, 82oveq12d 7407 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = ((0g𝐺) + (𝐹𝑘)))
841, 2, 10mndlid 18687 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
859, 7, 84syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8685adantr 480 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → ((0g𝐺) + (𝐹𝑘)) = (𝐹𝑘))
8783, 86eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐴) ∧ 𝑘𝐷) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
8822eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑘 ∈ (𝐶𝐷)))
89 elun 4118 . . . . . . . . 9 (𝑘 ∈ (𝐶𝐷) ↔ (𝑘𝐶𝑘𝐷))
9088, 89bitrdi 287 . . . . . . . 8 (𝜑 → (𝑘𝐴 ↔ (𝑘𝐶𝑘𝐷)))
9190biimpa 476 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑘𝐶𝑘𝐷))
9278, 87, 91mpjaodan 960 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝐹𝑘))
9392mpteq2dva 5202 . . . . 5 (𝜑 → (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (𝐹𝑘)))
9419, 93eqtr4d 2768 . . . 4 (𝜑𝐹 = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
95 eqidd 2731 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))))
96 eqidd 2731 . . . . 5 (𝜑 → (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))) = (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))
975, 14, 16, 95, 96offval2 7675 . . . 4 (𝜑 → ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))) = (𝑘𝐴 ↦ (if(𝑘𝐶, (𝐹𝑘), (0g𝐺)) + if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9894, 97eqtr4d 2768 . . 3 (𝜑𝐹 = ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺)))))
9998oveq2d 7405 . 2 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums ((𝑘𝐴 ↦ if(𝑘𝐶, (𝐹𝑘), (0g𝐺))) ∘f + (𝑘𝐴 ↦ if(𝑘𝐷, (𝐹𝑘), (0g𝐺))))))
10060, 99eleqtrrd 2832 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3913  cun 3914  cin 3915  wss 3916  c0 4298  ifcif 4490  cmpt 5190  cres 5642  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653  Basecbs 17185  +gcplusg 17226  0gc0g 17408  Mndcmnd 18667  CMndccmn 19716  TopSpctps 22825  TopMndctmd 23963   tsums ctsu 24019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-gsum 17411  df-topgen 17412  df-plusf 18572  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-cntz 19255  df-cmn 19718  df-fbas 21267  df-fg 21268  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-ntr 22913  df-nei 22991  df-cn 23120  df-cnp 23121  df-tx 23455  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-tmd 23965  df-tsms 24020
This theorem is referenced by:  esumsplit  34049
  Copyright terms: Public domain W3C validator