Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq3d Structured version   Visualization version   GIF version

Theorem trpredeq3d 33367
Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Hypothesis
Ref Expression
trpredeq3d.1 (𝜑𝑋 = 𝑌)
Assertion
Ref Expression
trpredeq3d (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))

Proof of Theorem trpredeq3d
StepHypRef Expression
1 trpredeq3d.1 . 2 (𝜑𝑋 = 𝑌)
2 trpredeq3 33364 . 2 (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))
31, 2syl 17 1 (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  TrPredctrpred 33359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rab 3062  df-v 3400  df-un 3848  df-in 3850  df-ss 3860  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-xp 5531  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-iota 6297  df-fv 6347  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-trpred 33360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator