Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trpredeq3d | Structured version Visualization version GIF version |
Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
trpredeq3d.1 | ⊢ (𝜑 → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
trpredeq3d | ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq3d.1 | . 2 ⊢ (𝜑 → 𝑋 = 𝑌) | |
2 | trpredeq3 33364 | . 2 ⊢ (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 TrPredctrpred 33359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rab 3062 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-iota 6297 df-fv 6347 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-trpred 33360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |