Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskpw | Structured version Visualization version GIF version |
Description: Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskpw | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltsk2g 10507 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 266 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simpld 495 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇)) |
4 | simpr 485 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
5 | 4 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
7 | pweq 4549 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | eleq1d 2823 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑇 ↔ 𝒫 𝐴 ∈ 𝑇)) |
9 | 8 | rspccva 3560 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
10 | 6, 9 | sylan 580 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ≈ cen 8730 Tarskictsk 10504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-tsk 10505 |
This theorem is referenced by: tsksn 10516 tsksuc 10518 tskr1om 10523 inttsk 10530 tskcard 10537 tskwun 10540 grutsk1 10577 pwinfi3 41170 |
Copyright terms: Public domain | W3C validator |