| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskpw | Structured version Visualization version GIF version | ||
| Description: Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tskpw | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltsk2g 10711 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇)) |
| 4 | simpr 484 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → 𝒫 𝑥 ∈ 𝑇) | |
| 5 | 4 | ralimi 3067 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇) |
| 7 | pweq 4580 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 8 | 7 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝑇 ↔ 𝒫 𝐴 ∈ 𝑇)) |
| 9 | 8 | rspccva 3590 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ∈ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
| 10 | 6, 9 | sylan 580 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 𝒫 cpw 4566 class class class wbr 5110 ≈ cen 8918 Tarskictsk 10708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-tsk 10709 |
| This theorem is referenced by: tsksn 10720 tsksuc 10722 tskr1om 10727 inttsk 10734 tskcard 10741 tskwun 10744 grutsk1 10781 pwinfi3 43559 |
| Copyright terms: Public domain | W3C validator |