MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpw Structured version   Visualization version   GIF version

Theorem tskpw 10440
Description: Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskpw ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)

Proof of Theorem tskpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eltsk2g 10438 . . . . 5 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 266 . . . 4 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simpld 494 . . 3 (𝑇 ∈ Tarski → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇))
4 simpr 484 . . . 4 ((𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → 𝒫 𝑥𝑇)
54ralimi 3086 . . 3 (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → ∀𝑥𝑇 𝒫 𝑥𝑇)
63, 5syl 17 . 2 (𝑇 ∈ Tarski → ∀𝑥𝑇 𝒫 𝑥𝑇)
7 pweq 4546 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87eleq1d 2823 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥𝑇 ↔ 𝒫 𝐴𝑇))
98rspccva 3551 . 2 ((∀𝑥𝑇 𝒫 𝑥𝑇𝐴𝑇) → 𝒫 𝐴𝑇)
106, 9sylan 579 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cen 8688  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-tsk 10436
This theorem is referenced by:  tsksn  10447  tsksuc  10449  tskr1om  10454  inttsk  10461  tskcard  10468  tskwun  10471  grutsk1  10508  pwinfi3  41059
  Copyright terms: Public domain W3C validator