MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpw Structured version   Visualization version   GIF version

Theorem tskpw 10791
Description: Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskpw ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)

Proof of Theorem tskpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eltsk2g 10789 . . . . 5 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 267 . . . 4 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simpld 494 . . 3 (𝑇 ∈ Tarski → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇))
4 simpr 484 . . . 4 ((𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → 𝒫 𝑥𝑇)
54ralimi 3081 . . 3 (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ 𝒫 𝑥𝑇) → ∀𝑥𝑇 𝒫 𝑥𝑇)
63, 5syl 17 . 2 (𝑇 ∈ Tarski → ∀𝑥𝑇 𝒫 𝑥𝑇)
7 pweq 4619 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87eleq1d 2824 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥𝑇 ↔ 𝒫 𝐴𝑇))
98rspccva 3621 . 2 ((∀𝑥𝑇 𝒫 𝑥𝑇𝐴𝑇) → 𝒫 𝐴𝑇)
106, 9sylan 580 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  wss 3963  𝒫 cpw 4605   class class class wbr 5148  cen 8981  Tarskictsk 10786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-pow 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-tsk 10787
This theorem is referenced by:  tsksn  10798  tsksuc  10800  tskr1om  10805  inttsk  10812  tskcard  10819  tskwun  10822  grutsk1  10859  pwinfi3  43553
  Copyright terms: Public domain W3C validator