Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toplatmeet Structured version   Visualization version   GIF version

Theorem toplatmeet 49117
Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
toplatmeet.i 𝐼 = (toInc‘𝐽)
toplatmeet.j (𝜑𝐽 ∈ Top)
toplatmeet.a (𝜑𝐴𝐽)
toplatmeet.b (𝜑𝐵𝐽)
toplatmeet.m = (meet‘𝐼)
Assertion
Ref Expression
toplatmeet (𝜑 → (𝐴 𝐵) = (𝐴𝐵))

Proof of Theorem toplatmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (glb‘𝐼) = (glb‘𝐼)
2 toplatmeet.m . . 3 = (meet‘𝐼)
3 toplatmeet.i . . . . 5 𝐼 = (toInc‘𝐽)
43ipopos 18452 . . . 4 𝐼 ∈ Poset
54a1i 11 . . 3 (𝜑𝐼 ∈ Poset)
6 toplatmeet.a . . 3 (𝜑𝐴𝐽)
7 toplatmeet.b . . 3 (𝜑𝐵𝐽)
81, 2, 5, 6, 7meetval 18305 . 2 (𝜑 → (𝐴 𝐵) = ((glb‘𝐼)‘{𝐴, 𝐵}))
9 toplatmeet.j . . 3 (𝜑𝐽 ∈ Top)
106, 7prssd 4775 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ 𝐽)
111a1i 11 . . 3 (𝜑 → (glb‘𝐼) = (glb‘𝐼))
12 intprg 4933 . . . . . . 7 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
136, 7, 12syl2anc 584 . . . . . 6 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
14 inopn 22824 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
159, 6, 7, 14syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ 𝐽)
1613, 15eqeltrd 2833 . . . . 5 (𝜑 {𝐴, 𝐵} ∈ 𝐽)
17 unimax 4897 . . . . 5 ( {𝐴, 𝐵} ∈ 𝐽 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1816, 17syl 17 . . . 4 (𝜑 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1918, 13eqtr2d 2769 . . 3 (𝜑 → (𝐴𝐵) = {𝑥𝐽𝑥 {𝐴, 𝐵}})
203, 9, 10, 11, 19, 15ipoglb 49105 . 2 (𝜑 → ((glb‘𝐼)‘{𝐴, 𝐵}) = (𝐴𝐵))
218, 20eqtrd 2768 1 (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3397  cin 3898  wss 3899  {cpr 4579   cuni 4860   cint 4899  cfv 6489  (class class class)co 7355  Posetcpo 18223  glbcglb 18226  meetcmee 18228  toInccipo 18443  Topctop 22818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-tset 17190  df-ple 17191  df-ocomp 17192  df-odu 18203  df-proset 18210  df-poset 18229  df-lub 18260  df-glb 18261  df-meet 18263  df-ipo 18444  df-top 22819
This theorem is referenced by:  topdlat  49118
  Copyright terms: Public domain W3C validator