| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > toplatmeet | Structured version Visualization version GIF version | ||
| Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| toplatmeet.i | ⊢ 𝐼 = (toInc‘𝐽) |
| toplatmeet.j | ⊢ (𝜑 → 𝐽 ∈ Top) |
| toplatmeet.a | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| toplatmeet.b | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
| toplatmeet.m | ⊢ ∧ = (meet‘𝐼) |
| Ref | Expression |
|---|---|
| toplatmeet | ⊢ (𝜑 → (𝐴 ∧ 𝐵) = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (glb‘𝐼) = (glb‘𝐼) | |
| 2 | toplatmeet.m | . . 3 ⊢ ∧ = (meet‘𝐼) | |
| 3 | toplatmeet.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐽) | |
| 4 | 3 | ipopos 18452 | . . . 4 ⊢ 𝐼 ∈ Poset |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 6 | toplatmeet.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐽) | |
| 7 | toplatmeet.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
| 8 | 1, 2, 5, 6, 7 | meetval 18305 | . 2 ⊢ (𝜑 → (𝐴 ∧ 𝐵) = ((glb‘𝐼)‘{𝐴, 𝐵})) |
| 9 | toplatmeet.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 10 | 6, 7 | prssd 4775 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐽) |
| 11 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (glb‘𝐼) = (glb‘𝐼)) |
| 12 | intprg 4933 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 13 | 6, 7, 12 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 14 | inopn 22824 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | |
| 15 | 9, 6, 7, 14 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) |
| 16 | 13, 15 | eqeltrd 2833 | . . . . 5 ⊢ (𝜑 → ∩ {𝐴, 𝐵} ∈ 𝐽) |
| 17 | unimax 4897 | . . . . 5 ⊢ (∩ {𝐴, 𝐵} ∈ 𝐽 → ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ {𝐴, 𝐵}} = ∩ {𝐴, 𝐵}) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ {𝐴, 𝐵}} = ∩ {𝐴, 𝐵}) |
| 19 | 18, 13 | eqtr2d 2769 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∪ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ {𝐴, 𝐵}}) |
| 20 | 3, 9, 10, 11, 19, 15 | ipoglb 49105 | . 2 ⊢ (𝜑 → ((glb‘𝐼)‘{𝐴, 𝐵}) = (𝐴 ∩ 𝐵)) |
| 21 | 8, 20 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴 ∧ 𝐵) = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3397 ∩ cin 3898 ⊆ wss 3899 {cpr 4579 ∪ cuni 4860 ∩ cint 4899 ‘cfv 6489 (class class class)co 7355 Posetcpo 18223 glbcglb 18226 meetcmee 18228 toInccipo 18443 Topctop 22818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-tset 17190 df-ple 17191 df-ocomp 17192 df-odu 18203 df-proset 18210 df-poset 18229 df-lub 18260 df-glb 18261 df-meet 18263 df-ipo 18444 df-top 22819 |
| This theorem is referenced by: topdlat 49118 |
| Copyright terms: Public domain | W3C validator |