Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toplatmeet Structured version   Visualization version   GIF version

Theorem toplatmeet 49013
Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
toplatmeet.i 𝐼 = (toInc‘𝐽)
toplatmeet.j (𝜑𝐽 ∈ Top)
toplatmeet.a (𝜑𝐴𝐽)
toplatmeet.b (𝜑𝐵𝐽)
toplatmeet.m = (meet‘𝐼)
Assertion
Ref Expression
toplatmeet (𝜑 → (𝐴 𝐵) = (𝐴𝐵))

Proof of Theorem toplatmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (glb‘𝐼) = (glb‘𝐼)
2 toplatmeet.m . . 3 = (meet‘𝐼)
3 toplatmeet.i . . . . 5 𝐼 = (toInc‘𝐽)
43ipopos 18434 . . . 4 𝐼 ∈ Poset
54a1i 11 . . 3 (𝜑𝐼 ∈ Poset)
6 toplatmeet.a . . 3 (𝜑𝐴𝐽)
7 toplatmeet.b . . 3 (𝜑𝐵𝐽)
81, 2, 5, 6, 7meetval 18287 . 2 (𝜑 → (𝐴 𝐵) = ((glb‘𝐼)‘{𝐴, 𝐵}))
9 toplatmeet.j . . 3 (𝜑𝐽 ∈ Top)
106, 7prssd 4772 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ 𝐽)
111a1i 11 . . 3 (𝜑 → (glb‘𝐼) = (glb‘𝐼))
12 intprg 4929 . . . . . . 7 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
136, 7, 12syl2anc 584 . . . . . 6 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
14 inopn 22807 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
159, 6, 7, 14syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ 𝐽)
1613, 15eqeltrd 2829 . . . . 5 (𝜑 {𝐴, 𝐵} ∈ 𝐽)
17 unimax 4893 . . . . 5 ( {𝐴, 𝐵} ∈ 𝐽 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1816, 17syl 17 . . . 4 (𝜑 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1918, 13eqtr2d 2766 . . 3 (𝜑 → (𝐴𝐵) = {𝑥𝐽𝑥 {𝐴, 𝐵}})
203, 9, 10, 11, 19, 15ipoglb 49001 . 2 (𝜑 → ((glb‘𝐼)‘{𝐴, 𝐵}) = (𝐴𝐵))
218, 20eqtrd 2765 1 (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  {crab 3393  cin 3899  wss 3900  {cpr 4576   cuni 4857   cint 4895  cfv 6477  (class class class)co 7341  Posetcpo 18205  glbcglb 18208  meetcmee 18210  toInccipo 18425  Topctop 22801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-tset 17172  df-ple 17173  df-ocomp 17174  df-odu 18185  df-proset 18192  df-poset 18211  df-lub 18242  df-glb 18243  df-meet 18245  df-ipo 18426  df-top 22802
This theorem is referenced by:  topdlat  49014
  Copyright terms: Public domain W3C validator