Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toplatmeet Structured version   Visualization version   GIF version

Theorem toplatmeet 48984
Description: Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
toplatmeet.i 𝐼 = (toInc‘𝐽)
toplatmeet.j (𝜑𝐽 ∈ Top)
toplatmeet.a (𝜑𝐴𝐽)
toplatmeet.b (𝜑𝐵𝐽)
toplatmeet.m = (meet‘𝐼)
Assertion
Ref Expression
toplatmeet (𝜑 → (𝐴 𝐵) = (𝐴𝐵))

Proof of Theorem toplatmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (glb‘𝐼) = (glb‘𝐼)
2 toplatmeet.m . . 3 = (meet‘𝐼)
3 toplatmeet.i . . . . 5 𝐼 = (toInc‘𝐽)
43ipopos 18477 . . . 4 𝐼 ∈ Poset
54a1i 11 . . 3 (𝜑𝐼 ∈ Poset)
6 toplatmeet.a . . 3 (𝜑𝐴𝐽)
7 toplatmeet.b . . 3 (𝜑𝐵𝐽)
81, 2, 5, 6, 7meetval 18330 . 2 (𝜑 → (𝐴 𝐵) = ((glb‘𝐼)‘{𝐴, 𝐵}))
9 toplatmeet.j . . 3 (𝜑𝐽 ∈ Top)
106, 7prssd 4782 . . 3 (𝜑 → {𝐴, 𝐵} ⊆ 𝐽)
111a1i 11 . . 3 (𝜑 → (glb‘𝐼) = (glb‘𝐼))
12 intprg 4941 . . . . . . 7 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
136, 7, 12syl2anc 584 . . . . . 6 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
14 inopn 22819 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
159, 6, 7, 14syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ 𝐽)
1613, 15eqeltrd 2828 . . . . 5 (𝜑 {𝐴, 𝐵} ∈ 𝐽)
17 unimax 4904 . . . . 5 ( {𝐴, 𝐵} ∈ 𝐽 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1816, 17syl 17 . . . 4 (𝜑 {𝑥𝐽𝑥 {𝐴, 𝐵}} = {𝐴, 𝐵})
1918, 13eqtr2d 2765 . . 3 (𝜑 → (𝐴𝐵) = {𝑥𝐽𝑥 {𝐴, 𝐵}})
203, 9, 10, 11, 19, 15ipoglb 48972 . 2 (𝜑 → ((glb‘𝐼)‘{𝐴, 𝐵}) = (𝐴𝐵))
218, 20eqtrd 2764 1 (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  cin 3910  wss 3911  {cpr 4587   cuni 4867   cint 4906  cfv 6499  (class class class)co 7369  Posetcpo 18248  glbcglb 18251  meetcmee 18253  toInccipo 18468  Topctop 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-tset 17215  df-ple 17216  df-ocomp 17217  df-odu 18228  df-proset 18235  df-poset 18254  df-lub 18285  df-glb 18286  df-meet 18288  df-ipo 18469  df-top 22814
This theorem is referenced by:  topdlat  48985
  Copyright terms: Public domain W3C validator