| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssuni | Structured version Visualization version GIF version | ||
| Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3428 | . . . 4 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
| 2 | lssss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lssss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssss 20867 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉) |
| 5 | 1, 4 | mprgbir 3054 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 6 | 5 | unieqi 4871 | . 2 ⊢ ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 7 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | 2, 3 | lss1 20869 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 9 | unimax 4895 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
| 11 | 6, 10 | eqtrid 2778 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Basecbs 17117 LModclmod 20791 LSubSpclss 20862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-lmod 20793 df-lss 20863 |
| This theorem is referenced by: mapdunirnN 41688 |
| Copyright terms: Public domain | W3C validator |