| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssuni | Structured version Visualization version GIF version | ||
| Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3442 | . . . 4 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
| 2 | lssss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lssss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssss 20849 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉) |
| 5 | 1, 4 | mprgbir 3052 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 6 | 5 | unieqi 4886 | . 2 ⊢ ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 7 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | 2, 3 | lss1 20851 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 9 | unimax 4911 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
| 11 | 6, 10 | eqtrid 2777 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 Basecbs 17186 LModclmod 20773 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 df-lss 20845 |
| This theorem is referenced by: mapdunirnN 41651 |
| Copyright terms: Public domain | W3C validator |