![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssuni | Structured version Visualization version GIF version |
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3465 | . . . 4 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
2 | lssss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lssss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 20547 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉) |
5 | 1, 4 | mprgbir 3069 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
6 | 5 | unieqi 4922 | . 2 ⊢ ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
7 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | 2, 3 | lss1 20549 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
9 | unimax 4949 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
11 | 6, 10 | eqtrid 2785 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 ⊆ wss 3949 ∪ cuni 4909 ‘cfv 6544 Basecbs 17144 LModclmod 20471 LSubSpclss 20542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 df-lss 20543 |
This theorem is referenced by: mapdunirnN 40521 |
Copyright terms: Public domain | W3C validator |