MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssuni Structured version   Visualization version   GIF version

Theorem lssuni 20550
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
lssuni.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
lssuni (𝜑 𝑆 = 𝑉)

Proof of Theorem lssuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabid2 3465 . . . 4 (𝑆 = {𝑥𝑆𝑥𝑉} ↔ ∀𝑥𝑆 𝑥𝑉)
2 lssss.v . . . . 5 𝑉 = (Base‘𝑊)
3 lssss.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssss 20547 . . . 4 (𝑥𝑆𝑥𝑉)
51, 4mprgbir 3069 . . 3 𝑆 = {𝑥𝑆𝑥𝑉}
65unieqi 4922 . 2 𝑆 = {𝑥𝑆𝑥𝑉}
7 lssuni.w . . 3 (𝜑𝑊 ∈ LMod)
82, 3lss1 20549 . . 3 (𝑊 ∈ LMod → 𝑉𝑆)
9 unimax 4949 . . 3 (𝑉𝑆 {𝑥𝑆𝑥𝑉} = 𝑉)
107, 8, 93syl 18 . 2 (𝜑 {𝑥𝑆𝑥𝑉} = 𝑉)
116, 10eqtrid 2785 1 (𝜑 𝑆 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {crab 3433  wss 3949   cuni 4909  cfv 6544  Basecbs 17144  LModclmod 20471  LSubSpclss 20542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-lmod 20473  df-lss 20543
This theorem is referenced by:  mapdunirnN  40521
  Copyright terms: Public domain W3C validator