| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssuni | Structured version Visualization version GIF version | ||
| Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
| Ref | Expression |
|---|---|
| lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 3429 | . . . 4 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
| 2 | lssss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lssss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | 2, 3 | lssss 20871 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉) |
| 5 | 1, 4 | mprgbir 3055 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 6 | 5 | unieqi 4870 | . 2 ⊢ ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
| 7 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | 2, 3 | lss1 20873 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
| 9 | unimax 4895 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
| 10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
| 11 | 6, 10 | eqtrid 2780 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ∪ cuni 4858 ‘cfv 6486 Basecbs 17122 LModclmod 20795 LSubSpclss 20866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-lmod 20797 df-lss 20867 |
| This theorem is referenced by: mapdunirnN 41769 |
| Copyright terms: Public domain | W3C validator |