Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lssuni | Structured version Visualization version GIF version |
Description: The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssuni.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
lssuni | ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid2 3314 | . . . 4 ⊢ (𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} ↔ ∀𝑥 ∈ 𝑆 𝑥 ⊆ 𝑉) | |
2 | lssss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lssss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 20198 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → 𝑥 ⊆ 𝑉) |
5 | 1, 4 | mprgbir 3079 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
6 | 5 | unieqi 4852 | . 2 ⊢ ∪ 𝑆 = ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} |
7 | lssuni.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | 2, 3 | lss1 20200 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
9 | unimax 4877 | . . 3 ⊢ (𝑉 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑉} = 𝑉) |
11 | 6, 10 | eqtrid 2790 | 1 ⊢ (𝜑 → ∪ 𝑆 = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 |
This theorem is referenced by: mapdunirnN 39664 |
Copyright terms: Public domain | W3C validator |