Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   GIF version

Theorem lssats 38994
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32390 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s 𝑆 = (LSubSp‘𝑊)
lssats.n 𝑁 = (LSpan‘𝑊)
lssats.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssats ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆   𝑥,𝑈
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem lssats
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2827 . . . . 5 (𝑦 = (0g𝑊) → (𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}) ↔ (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
2 simplll 775 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
3 simpllr 776 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑈𝑆)
4 simplr 769 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦𝑈)
5 eqid 2735 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
6 lssats.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20953 . . . . . . . . . 10 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
83, 4, 7syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (Base‘𝑊))
9 lssats.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 9lspsncl 20993 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
112, 8, 10syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
126, 9lspid 20998 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
132, 11, 12syl2anc 584 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
14 lssats.a . . . . . . . . . . . . 13 𝐴 = (LSAtoms‘𝑊)
156, 14lsatlss 38978 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝐴𝑆)
1615adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝐴𝑆)
17 rabss2 4088 . . . . . . . . . . 11 (𝐴𝑆 → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
18 uniss 4920 . . . . . . . . . . 11 ({𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈} → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
1916, 17, 183syl 18 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
20 unimax 4949 . . . . . . . . . . . 12 (𝑈𝑆 {𝑥𝑆𝑥𝑈} = 𝑈)
215, 6lssss 20952 . . . . . . . . . . . 12 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
2220, 21eqsstrd 4034 . . . . . . . . . . 11 (𝑈𝑆 {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2322adantl 481 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2419, 23sstrd 4006 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
2524ad2antrr 726 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
26 simpr 484 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ≠ (0g𝑊))
27 eqid 2735 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
285, 9, 27, 14lsatlspsn2 38974 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
292, 8, 26, 28syl3anc 1370 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
306, 9, 2, 3, 4ellspsn5 21012 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈)
31 sseq1 4021 . . . . . . . . . . 11 (𝑥 = (𝑁‘{𝑦}) → (𝑥𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈))
3231elrab 3695 . . . . . . . . . 10 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈))
3329, 30, 32sylanbrc 583 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈})
34 elssuni 4942 . . . . . . . . 9 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
3533, 34syl 17 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
365, 9lspss 21000 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
372, 25, 35, 36syl3anc 1370 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
3813, 37eqsstrrd 4035 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
395, 9lspsnid 21009 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
402, 8, 39syl2anc 584 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
4138, 40sseldd 3996 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
42 simpll 767 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑊 ∈ LMod)
435, 6, 9lspcl 20992 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊)) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4424, 43syldan 591 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4544adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4627, 6lss0cl 20963 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4742, 45, 46syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
481, 41, 47pm2.61ne 3025 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4948ex 412 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑦𝑈𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
5049ssrdv 4001 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
51 simpl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
525, 9lspss 21000 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊) ∧ {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈}) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5351, 23, 19, 52syl3anc 1370 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5420adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} = 𝑈)
5554fveq2d 6911 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = (𝑁𝑈))
566, 9lspid 20998 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
5755, 56eqtrd 2775 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = 𝑈)
5853, 57sseqtrd 4036 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ 𝑈)
5950, 58eqssd 4013 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  wss 3963  {csn 4631   cuni 4912  cfv 6563  Basecbs 17245  0gc0g 17486  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LSAtomsclsa 38956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lsatoms 38958
This theorem is referenced by:  lpssat  38995  lssatle  38997  lssat  38998
  Copyright terms: Public domain W3C validator