Step | Hyp | Ref
| Expression |
1 | | eleq1 2826 |
. . . . 5
⊢ (𝑦 = (0g‘𝑊) → (𝑦 ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ↔ (0g‘𝑊) ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}))) |
2 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑊 ∈ LMod) |
3 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑈 ∈ 𝑆) |
4 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑦 ∈ 𝑈) |
5 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑊) =
(Base‘𝑊) |
6 | | lssats.s |
. . . . . . . . . . 11
⊢ 𝑆 = (LSubSp‘𝑊) |
7 | 5, 6 | lssel 20114 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (Base‘𝑊)) |
8 | 3, 4, 7 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑦 ∈ (Base‘𝑊)) |
9 | | lssats.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑊) |
10 | 5, 6, 9 | lspsncl 20154 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆) |
11 | 2, 8, 10 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆) |
12 | 6, 9 | lspid 20159 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦})) |
13 | 2, 11, 12 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦})) |
14 | | lssats.a |
. . . . . . . . . . . . 13
⊢ 𝐴 = (LSAtoms‘𝑊) |
15 | 6, 14 | lsatlss 36937 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝐴 ⊆ 𝑆) |
17 | | rabss2 4007 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝑆 → {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) |
18 | | uniss 4844 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} → ∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ ∪
{𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ ∪
{𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) |
20 | | unimax 4874 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} = 𝑈) |
21 | 5, 6 | lssss 20113 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
22 | 20, 21 | eqsstrd 3955 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑆 → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
23 | 22 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
24 | 19, 23 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
25 | 24 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → ∪
{𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
26 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑦 ≠ (0g‘𝑊)) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝑊) = (0g‘𝑊) |
28 | 5, 9, 27, 14 | lsatlspsn2 36933 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴) |
29 | 2, 8, 26, 28 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴) |
30 | 6, 9, 2, 3, 4 | lspsnel5a 20173 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈) |
31 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑁‘{𝑦}) → (𝑥 ⊆ 𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈)) |
32 | 31 | elrab 3617 |
. . . . . . . . . 10
⊢ ((𝑁‘{𝑦}) ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈)) |
33 | 29, 30, 32 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) |
34 | | elssuni 4868 |
. . . . . . . . 9
⊢ ((𝑁‘{𝑦}) ∈ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} → (𝑁‘{𝑦}) ⊆ ∪
{𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ⊆ ∪
{𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) |
36 | 5, 9 | lspss 20161 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑥
∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ ∪
{𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
37 | 2, 25, 35, 36 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
38 | 13, 37 | eqsstrrd 3956 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
39 | 5, 9 | lspsnid 20170 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
40 | 2, 8, 39 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦})) |
41 | 38, 40 | sseldd 3918 |
. . . . 5
⊢ ((((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) ∧ 𝑦 ≠ (0g‘𝑊)) → 𝑦 ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
42 | | simpll 763 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) → 𝑊 ∈ LMod) |
43 | 5, 6, 9 | lspcl 20153 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑥
∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊)) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ∈ 𝑆) |
44 | 24, 43 | syldan 590 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ∈ 𝑆) |
45 | 44 | adantr 480 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ∈ 𝑆) |
46 | 27, 6 | lss0cl 20123 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘∪ {𝑥
∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ∈ 𝑆) → (0g‘𝑊) ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
47 | 42, 45, 46 | syl2anc 583 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) → (0g‘𝑊) ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
48 | 1, 41, 47 | pm2.61ne 3029 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
49 | 48 | ex 412 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑦 ∈ 𝑈 → 𝑦 ∈ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}))) |
50 | 49 | ssrdv 3923 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |
51 | | simpl 482 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ LMod) |
52 | 5, 9 | lspss 20161 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑥
∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈} ⊆ ∪
{𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ⊆ (𝑁‘∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈})) |
53 | 51, 23, 19, 52 | syl3anc 1369 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ⊆ (𝑁‘∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈})) |
54 | 20 | adantl 481 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈} = 𝑈) |
55 | 54 | fveq2d 6760 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) = (𝑁‘𝑈)) |
56 | 6, 9 | lspid 20159 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
57 | 55, 56 | eqtrd 2778 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘∪ {𝑥 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑈}) = 𝑈) |
58 | 53, 57 | sseqtrd 3957 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈}) ⊆ 𝑈) |
59 | 50, 58 | eqssd 3934 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) |