Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   GIF version

Theorem lssats 39012
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32297 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s 𝑆 = (LSubSp‘𝑊)
lssats.n 𝑁 = (LSpan‘𝑊)
lssats.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssats ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆   𝑥,𝑈
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem lssats
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . . . 5 (𝑦 = (0g𝑊) → (𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}) ↔ (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
2 simplll 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
3 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑈𝑆)
4 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦𝑈)
5 eqid 2730 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
6 lssats.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20850 . . . . . . . . . 10 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
83, 4, 7syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (Base‘𝑊))
9 lssats.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 9lspsncl 20890 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
112, 8, 10syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
126, 9lspid 20895 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
132, 11, 12syl2anc 584 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
14 lssats.a . . . . . . . . . . . . 13 𝐴 = (LSAtoms‘𝑊)
156, 14lsatlss 38996 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝐴𝑆)
1615adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝐴𝑆)
17 rabss2 4044 . . . . . . . . . . 11 (𝐴𝑆 → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
18 uniss 4882 . . . . . . . . . . 11 ({𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈} → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
1916, 17, 183syl 18 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
20 unimax 4911 . . . . . . . . . . . 12 (𝑈𝑆 {𝑥𝑆𝑥𝑈} = 𝑈)
215, 6lssss 20849 . . . . . . . . . . . 12 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
2220, 21eqsstrd 3984 . . . . . . . . . . 11 (𝑈𝑆 {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2322adantl 481 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2419, 23sstrd 3960 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
2524ad2antrr 726 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
26 simpr 484 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ≠ (0g𝑊))
27 eqid 2730 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
285, 9, 27, 14lsatlspsn2 38992 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
292, 8, 26, 28syl3anc 1373 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
306, 9, 2, 3, 4ellspsn5 20909 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈)
31 sseq1 3975 . . . . . . . . . . 11 (𝑥 = (𝑁‘{𝑦}) → (𝑥𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈))
3231elrab 3662 . . . . . . . . . 10 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈))
3329, 30, 32sylanbrc 583 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈})
34 elssuni 4904 . . . . . . . . 9 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
3533, 34syl 17 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
365, 9lspss 20897 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
372, 25, 35, 36syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
3813, 37eqsstrrd 3985 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
395, 9lspsnid 20906 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
402, 8, 39syl2anc 584 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
4138, 40sseldd 3950 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
42 simpll 766 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑊 ∈ LMod)
435, 6, 9lspcl 20889 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊)) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4424, 43syldan 591 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4544adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4627, 6lss0cl 20860 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4742, 45, 46syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
481, 41, 47pm2.61ne 3011 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4948ex 412 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑦𝑈𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
5049ssrdv 3955 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
51 simpl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
525, 9lspss 20897 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊) ∧ {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈}) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5351, 23, 19, 52syl3anc 1373 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5420adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} = 𝑈)
5554fveq2d 6865 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = (𝑁𝑈))
566, 9lspid 20895 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
5755, 56eqtrd 2765 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = 𝑈)
5853, 57sseqtrd 3986 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ 𝑈)
5950, 58eqssd 3967 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  wss 3917  {csn 4592   cuni 4874  cfv 6514  Basecbs 17186  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LSAtomsclsa 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lsatoms 38976
This theorem is referenced by:  lpssat  39013  lssatle  39015  lssat  39016
  Copyright terms: Public domain W3C validator