Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   GIF version

Theorem lssats 39030
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32342 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s 𝑆 = (LSubSp‘𝑊)
lssats.n 𝑁 = (LSpan‘𝑊)
lssats.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssats ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆   𝑥,𝑈
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem lssats
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2822 . . . . 5 (𝑦 = (0g𝑊) → (𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}) ↔ (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
2 simplll 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
3 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑈𝑆)
4 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦𝑈)
5 eqid 2735 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
6 lssats.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20894 . . . . . . . . . 10 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
83, 4, 7syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (Base‘𝑊))
9 lssats.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 9lspsncl 20934 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
112, 8, 10syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
126, 9lspid 20939 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
132, 11, 12syl2anc 584 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
14 lssats.a . . . . . . . . . . . . 13 𝐴 = (LSAtoms‘𝑊)
156, 14lsatlss 39014 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝐴𝑆)
1615adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝐴𝑆)
17 rabss2 4053 . . . . . . . . . . 11 (𝐴𝑆 → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
18 uniss 4891 . . . . . . . . . . 11 ({𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈} → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
1916, 17, 183syl 18 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
20 unimax 4920 . . . . . . . . . . . 12 (𝑈𝑆 {𝑥𝑆𝑥𝑈} = 𝑈)
215, 6lssss 20893 . . . . . . . . . . . 12 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
2220, 21eqsstrd 3993 . . . . . . . . . . 11 (𝑈𝑆 {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2322adantl 481 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2419, 23sstrd 3969 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
2524ad2antrr 726 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
26 simpr 484 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ≠ (0g𝑊))
27 eqid 2735 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
285, 9, 27, 14lsatlspsn2 39010 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
292, 8, 26, 28syl3anc 1373 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
306, 9, 2, 3, 4ellspsn5 20953 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈)
31 sseq1 3984 . . . . . . . . . . 11 (𝑥 = (𝑁‘{𝑦}) → (𝑥𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈))
3231elrab 3671 . . . . . . . . . 10 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈))
3329, 30, 32sylanbrc 583 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈})
34 elssuni 4913 . . . . . . . . 9 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
3533, 34syl 17 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
365, 9lspss 20941 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
372, 25, 35, 36syl3anc 1373 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
3813, 37eqsstrrd 3994 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
395, 9lspsnid 20950 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
402, 8, 39syl2anc 584 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
4138, 40sseldd 3959 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
42 simpll 766 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑊 ∈ LMod)
435, 6, 9lspcl 20933 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊)) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4424, 43syldan 591 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4544adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4627, 6lss0cl 20904 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4742, 45, 46syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
481, 41, 47pm2.61ne 3017 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4948ex 412 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑦𝑈𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
5049ssrdv 3964 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
51 simpl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
525, 9lspss 20941 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊) ∧ {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈}) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5351, 23, 19, 52syl3anc 1373 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5420adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} = 𝑈)
5554fveq2d 6880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = (𝑁𝑈))
566, 9lspid 20939 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
5755, 56eqtrd 2770 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = 𝑈)
5853, 57sseqtrd 3995 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ 𝑈)
5950, 58eqssd 3976 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  wss 3926  {csn 4601   cuni 4883  cfv 6531  Basecbs 17228  0gc0g 17453  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  LSAtomsclsa 38992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lsatoms 38994
This theorem is referenced by:  lpssat  39031  lssatle  39033  lssat  39034
  Copyright terms: Public domain W3C validator