Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   GIF version

Theorem lssats 38968
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32393 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s 𝑆 = (LSubSp‘𝑊)
lssats.n 𝑁 = (LSpan‘𝑊)
lssats.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssats ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆   𝑥,𝑈
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem lssats
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . . . 5 (𝑦 = (0g𝑊) → (𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}) ↔ (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
2 simplll 774 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
3 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑈𝑆)
4 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦𝑈)
5 eqid 2740 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
6 lssats.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
75, 6lssel 20958 . . . . . . . . . 10 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
83, 4, 7syl2anc 583 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (Base‘𝑊))
9 lssats.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 9lspsncl 20998 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
112, 8, 10syl2anc 583 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
126, 9lspid 21003 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
132, 11, 12syl2anc 583 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
14 lssats.a . . . . . . . . . . . . 13 𝐴 = (LSAtoms‘𝑊)
156, 14lsatlss 38952 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝐴𝑆)
1615adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝐴𝑆)
17 rabss2 4101 . . . . . . . . . . 11 (𝐴𝑆 → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
18 uniss 4939 . . . . . . . . . . 11 ({𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈} → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
1916, 17, 183syl 18 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
20 unimax 4968 . . . . . . . . . . . 12 (𝑈𝑆 {𝑥𝑆𝑥𝑈} = 𝑈)
215, 6lssss 20957 . . . . . . . . . . . 12 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
2220, 21eqsstrd 4047 . . . . . . . . . . 11 (𝑈𝑆 {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2322adantl 481 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2419, 23sstrd 4019 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
2524ad2antrr 725 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
26 simpr 484 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ≠ (0g𝑊))
27 eqid 2740 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
285, 9, 27, 14lsatlspsn2 38948 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
292, 8, 26, 28syl3anc 1371 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
306, 9, 2, 3, 4ellspsn5 21017 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈)
31 sseq1 4034 . . . . . . . . . . 11 (𝑥 = (𝑁‘{𝑦}) → (𝑥𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈))
3231elrab 3708 . . . . . . . . . 10 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈))
3329, 30, 32sylanbrc 582 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈})
34 elssuni 4961 . . . . . . . . 9 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
3533, 34syl 17 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
365, 9lspss 21005 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
372, 25, 35, 36syl3anc 1371 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
3813, 37eqsstrrd 4048 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
395, 9lspsnid 21014 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
402, 8, 39syl2anc 583 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
4138, 40sseldd 4009 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
42 simpll 766 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑊 ∈ LMod)
435, 6, 9lspcl 20997 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊)) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4424, 43syldan 590 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4544adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4627, 6lss0cl 20968 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4742, 45, 46syl2anc 583 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
481, 41, 47pm2.61ne 3033 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4948ex 412 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑦𝑈𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
5049ssrdv 4014 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
51 simpl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
525, 9lspss 21005 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊) ∧ {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈}) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5351, 23, 19, 52syl3anc 1371 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5420adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} = 𝑈)
5554fveq2d 6924 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = (𝑁𝑈))
566, 9lspid 21003 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
5755, 56eqtrd 2780 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = 𝑈)
5853, 57sseqtrd 4049 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ 𝑈)
5950, 58eqssd 4026 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  wss 3976  {csn 4648   cuni 4931  cfv 6573  Basecbs 17258  0gc0g 17499  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LSAtomsclsa 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lsatoms 38932
This theorem is referenced by:  lpssat  38969  lssatle  38971  lssat  38972
  Copyright terms: Public domain W3C validator