Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   GIF version

Theorem lssat 38997
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 32325 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s 𝑆 = (LSubSp‘𝑊)
lssat.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssat (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑈,𝑝   𝑉,𝑝   𝑊,𝑝

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 4042 . . 3 (𝑈𝑉 ↔ (𝑈𝑉 ∧ ¬ 𝑉𝑈))
21simprbi 496 . 2 (𝑈𝑉 → ¬ 𝑉𝑈)
3 ss2rab 4024 . . . . . 6 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑉𝑝𝑈))
4 iman 401 . . . . . . 7 ((𝑝𝑉𝑝𝑈) ↔ ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
54ralbii 3075 . . . . . 6 (∀𝑝𝐴 (𝑝𝑉𝑝𝑈) ↔ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
63, 5bitr2i 276 . . . . 5 (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
7 simpl1 1192 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
8 lssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
9 lssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
108, 9lsatlss 38977 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
11 rabss2 4031 . . . . . . . . . 10 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
12 uniss 4869 . . . . . . . . . 10 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
137, 10, 11, 124syl 19 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
14 simpl2 1193 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈𝑆)
15 unimax 4897 . . . . . . . . . . 11 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1614, 15syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} = 𝑈)
17 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1817, 8lssss 20857 . . . . . . . . . . 11 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1914, 18syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 ⊆ (Base‘𝑊))
2016, 19eqsstrd 3972 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2113, 20sstrd 3948 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4869 . . . . . . . . 9 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2729 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2517, 24lspss 20905 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
267, 21, 23, 25syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
27 simpl3 1194 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑆)
288, 24, 9lssats 38993 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑉𝑆) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
297, 27, 28syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
308, 24, 9lssats 38993 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
317, 14, 30syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3226, 29, 313sstr4d 3993 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑈)
3332ex 412 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → 𝑉𝑈))
346, 33biimtrid 242 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) → 𝑉𝑈))
3534con3dimp 408 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
36 dfrex2 3056 . . 3 (∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
3735, 36sylibr 234 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
382, 37sylan2 593 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905  wpss 3906   cuni 4861  cfv 6486  Basecbs 17138  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LSAtomsclsa 38955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lsatoms 38957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator