Proof of Theorem lssat
| Step | Hyp | Ref
| Expression |
| 1 | | dfpss3 4089 |
. . 3
⊢ (𝑈 ⊊ 𝑉 ↔ (𝑈 ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ 𝑈)) |
| 2 | 1 | simprbi 496 |
. 2
⊢ (𝑈 ⊊ 𝑉 → ¬ 𝑉 ⊆ 𝑈) |
| 3 | | ss2rab 4071 |
. . . . . 6
⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈)) |
| 4 | | iman 401 |
. . . . . . 7
⊢ ((𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈) ↔ ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |
| 5 | 4 | ralbii 3093 |
. . . . . 6
⊢
(∀𝑝 ∈
𝐴 (𝑝 ⊆ 𝑉 → 𝑝 ⊆ 𝑈) ↔ ∀𝑝 ∈ 𝐴 ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |
| 6 | 3, 5 | bitr2i 276 |
. . . . 5
⊢
(∀𝑝 ∈
𝐴 ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈) ↔ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
| 7 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
| 8 | | lssat.s |
. . . . . . . . . . 11
⊢ 𝑆 = (LSubSp‘𝑊) |
| 9 | | lssat.a |
. . . . . . . . . . 11
⊢ 𝐴 = (LSAtoms‘𝑊) |
| 10 | 8, 9 | lsatlss 38997 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
| 11 | | rabss2 4078 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
| 12 | | uniss 4915 |
. . . . . . . . . 10
⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪
{𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
| 13 | 7, 10, 11, 12 | 4syl 19 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪
{𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
| 14 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑈 ∈ 𝑆) |
| 15 | | unimax 4944 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪
{𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
| 17 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 18 | 17, 8 | lssss 20934 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 19 | 14, 18 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑈 ⊆ (Base‘𝑊)) |
| 20 | 16, 19 | eqsstrd 4018 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪
{𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
| 21 | 13, 20 | sstrd 3994 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
| 22 | | uniss 4915 |
. . . . . . . . 9
⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
| 23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
| 24 | | eqid 2737 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 25 | 17, 24 | lspss 20982 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝
∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ ∪
{𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 26 | 7, 21, 23, 25 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 27 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑉 ∈ 𝑆) |
| 28 | 8, 24, 9 | lssats 39013 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ∈ 𝑆) → 𝑉 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉})) |
| 29 | 7, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑉 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉})) |
| 30 | 8, 24, 9 | lssats 39013 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 31 | 7, 14, 30 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 32 | 26, 29, 31 | 3sstr4d 4039 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑉 ⊆ 𝑈) |
| 33 | 32 | ex 412 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑉} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑉 ⊆ 𝑈)) |
| 34 | 6, 33 | biimtrid 242 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) → (∀𝑝 ∈ 𝐴 ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈) → 𝑉 ⊆ 𝑈)) |
| 35 | 34 | con3dimp 408 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ ¬ 𝑉 ⊆ 𝑈) → ¬ ∀𝑝 ∈ 𝐴 ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |
| 36 | | dfrex2 3073 |
. . 3
⊢
(∃𝑝 ∈
𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |
| 37 | 35, 36 | sylibr 234 |
. 2
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ ¬ 𝑉 ⊆ 𝑈) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |
| 38 | 2, 37 | sylan2 593 |
1
⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑉) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) |