Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   GIF version

Theorem lssat 35029
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29739 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s 𝑆 = (LSubSp‘𝑊)
lssat.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssat (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑈,𝑝   𝑉,𝑝   𝑊,𝑝

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3888 . . 3 (𝑈𝑉 ↔ (𝑈𝑉 ∧ ¬ 𝑉𝑈))
21simprbi 491 . 2 (𝑈𝑉 → ¬ 𝑉𝑈)
3 ss2rab 3872 . . . . . 6 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑉𝑝𝑈))
4 iman 391 . . . . . . 7 ((𝑝𝑉𝑝𝑈) ↔ ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
54ralbii 3159 . . . . . 6 (∀𝑝𝐴 (𝑝𝑉𝑝𝑈) ↔ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
63, 5bitr2i 268 . . . . 5 (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
7 simpl1 1243 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
8 lssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
9 lssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
108, 9lsatlss 35009 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
11 rabss2 3879 . . . . . . . . . 10 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
12 uniss 4649 . . . . . . . . . 10 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
137, 10, 11, 124syl 19 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
14 simpl2 1245 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈𝑆)
15 unimax 4663 . . . . . . . . . . 11 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1614, 15syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} = 𝑈)
17 eqid 2797 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1817, 8lssss 19252 . . . . . . . . . . 11 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1914, 18syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 ⊆ (Base‘𝑊))
2016, 19eqsstrd 3833 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2113, 20sstrd 3806 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4649 . . . . . . . . 9 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 474 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2797 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2517, 24lspss 19302 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
267, 21, 23, 25syl3anc 1491 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
27 simpl3 1247 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑆)
288, 24, 9lssats 35025 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑉𝑆) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
297, 27, 28syl2anc 580 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
308, 24, 9lssats 35025 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
317, 14, 30syl2anc 580 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3226, 29, 313sstr4d 3842 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑈)
3332ex 402 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → 𝑉𝑈))
346, 33syl5bi 234 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) → 𝑉𝑈))
3534con3dimp 398 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
36 dfrex2 3174 . . 3 (∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
3735, 36sylibr 226 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
382, 37sylan2 587 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3087  wrex 3088  {crab 3091  wss 3767  wpss 3768   cuni 4626  cfv 6099  Basecbs 16181  LModclmod 19178  LSubSpclss 19247  LSpanclspn 19289  LSAtomsclsa 34987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-plusg 16277  df-0g 16414  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-sbg 17740  df-mgp 18803  df-ur 18815  df-ring 18862  df-lmod 19180  df-lss 19248  df-lsp 19290  df-lsatoms 34989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator