Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   GIF version

Theorem lssat 35704
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29827 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s 𝑆 = (LSubSp‘𝑊)
lssat.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssat (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑈,𝑝   𝑉,𝑝   𝑊,𝑝

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3990 . . 3 (𝑈𝑉 ↔ (𝑈𝑉 ∧ ¬ 𝑉𝑈))
21simprbi 497 . 2 (𝑈𝑉 → ¬ 𝑉𝑈)
3 ss2rab 3974 . . . . . 6 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑉𝑝𝑈))
4 iman 402 . . . . . . 7 ((𝑝𝑉𝑝𝑈) ↔ ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
54ralbii 3134 . . . . . 6 (∀𝑝𝐴 (𝑝𝑉𝑝𝑈) ↔ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
63, 5bitr2i 277 . . . . 5 (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
7 simpl1 1184 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
8 lssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
9 lssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
108, 9lsatlss 35684 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
11 rabss2 3981 . . . . . . . . . 10 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
12 uniss 4772 . . . . . . . . . 10 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
137, 10, 11, 124syl 19 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
14 simpl2 1185 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈𝑆)
15 unimax 4786 . . . . . . . . . . 11 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1614, 15syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} = 𝑈)
17 eqid 2797 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1817, 8lssss 19402 . . . . . . . . . . 11 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1914, 18syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 ⊆ (Base‘𝑊))
2016, 19eqsstrd 3932 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2113, 20sstrd 3905 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4772 . . . . . . . . 9 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 482 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2797 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2517, 24lspss 19450 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
267, 21, 23, 25syl3anc 1364 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
27 simpl3 1186 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑆)
288, 24, 9lssats 35700 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑉𝑆) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
297, 27, 28syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
308, 24, 9lssats 35700 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
317, 14, 30syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3226, 29, 313sstr4d 3941 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑈)
3332ex 413 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → 𝑉𝑈))
346, 33syl5bi 243 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) → 𝑉𝑈))
3534con3dimp 409 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
36 dfrex2 3205 . . 3 (∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
3735, 36sylibr 235 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
382, 37sylan2 592 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wral 3107  wrex 3108  {crab 3111  wss 3865  wpss 3866   cuni 4751  cfv 6232  Basecbs 16316  LModclmod 19328  LSubSpclss 19397  LSpanclspn 19437  LSAtomsclsa 35662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-plusg 16411  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-grp 17868  df-minusg 17869  df-sbg 17870  df-mgp 18934  df-ur 18946  df-ring 18993  df-lmod 19330  df-lss 19398  df-lsp 19438  df-lsatoms 35664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator