Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   GIF version

Theorem lssat 36618
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 30250 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s 𝑆 = (LSubSp‘𝑊)
lssat.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssat (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑈,𝑝   𝑉,𝑝   𝑊,𝑝

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3994 . . 3 (𝑈𝑉 ↔ (𝑈𝑉 ∧ ¬ 𝑉𝑈))
21simprbi 500 . 2 (𝑈𝑉 → ¬ 𝑉𝑈)
3 ss2rab 3977 . . . . . 6 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑉𝑝𝑈))
4 iman 405 . . . . . . 7 ((𝑝𝑉𝑝𝑈) ↔ ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
54ralbii 3097 . . . . . 6 (∀𝑝𝐴 (𝑝𝑉𝑝𝑈) ↔ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
63, 5bitr2i 279 . . . . 5 (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
7 simpl1 1188 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
8 lssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
9 lssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
108, 9lsatlss 36598 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
11 rabss2 3984 . . . . . . . . . 10 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
12 uniss 4809 . . . . . . . . . 10 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
137, 10, 11, 124syl 19 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
14 simpl2 1189 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈𝑆)
15 unimax 4839 . . . . . . . . . . 11 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1614, 15syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} = 𝑈)
17 eqid 2758 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1817, 8lssss 19781 . . . . . . . . . . 11 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1914, 18syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 ⊆ (Base‘𝑊))
2016, 19eqsstrd 3932 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2113, 20sstrd 3904 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4809 . . . . . . . . 9 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 485 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2758 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2517, 24lspss 19829 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
267, 21, 23, 25syl3anc 1368 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
27 simpl3 1190 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑆)
288, 24, 9lssats 36614 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑉𝑆) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
297, 27, 28syl2anc 587 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
308, 24, 9lssats 36614 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
317, 14, 30syl2anc 587 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3226, 29, 313sstr4d 3941 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑈)
3332ex 416 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → 𝑉𝑈))
346, 33syl5bi 245 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) → 𝑉𝑈))
3534con3dimp 412 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
36 dfrex2 3166 . . 3 (∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
3735, 36sylibr 237 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
382, 37sylan2 595 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  wss 3860  wpss 3861   cuni 4801  cfv 6339  Basecbs 16546  LModclmod 19707  LSubSpclss 19776  LSpanclspn 19816  LSAtomsclsa 36576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-plusg 16641  df-0g 16778  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-minusg 18178  df-sbg 18179  df-mgp 19313  df-ur 19325  df-ring 19372  df-lmod 19709  df-lss 19777  df-lsp 19817  df-lsatoms 36578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator