Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssat Structured version   Visualization version   GIF version

Theorem lssat 34825
Description: Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29562 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssat.s 𝑆 = (LSubSp‘𝑊)
lssat.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssat (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑈,𝑝   𝑉,𝑝   𝑊,𝑝

Proof of Theorem lssat
StepHypRef Expression
1 dfpss3 3843 . . 3 (𝑈𝑉 ↔ (𝑈𝑉 ∧ ¬ 𝑉𝑈))
21simprbi 484 . 2 (𝑈𝑉 → ¬ 𝑉𝑈)
3 ss2rab 3827 . . . . . 6 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑉𝑝𝑈))
4 iman 388 . . . . . . 7 ((𝑝𝑉𝑝𝑈) ↔ ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
54ralbii 3129 . . . . . 6 (∀𝑝𝐴 (𝑝𝑉𝑝𝑈) ↔ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
63, 5bitr2i 265 . . . . 5 (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
7 simpl1 1227 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
8 lssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
9 lssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
108, 9lsatlss 34805 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
11 rabss2 3834 . . . . . . . . . 10 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
12 uniss 4595 . . . . . . . . . 10 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
137, 10, 11, 124syl 19 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
14 simpl2 1229 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈𝑆)
15 unimax 4609 . . . . . . . . . . 11 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1614, 15syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} = 𝑈)
17 eqid 2771 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1817, 8lssss 19147 . . . . . . . . . . 11 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1914, 18syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 ⊆ (Base‘𝑊))
2016, 19eqsstrd 3788 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2113, 20sstrd 3762 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4595 . . . . . . . . 9 ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 467 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2771 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2517, 24lspss 19197 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
267, 21, 23, 25syl3anc 1476 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
27 simpl3 1231 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑆)
288, 24, 9lssats 34821 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑉𝑆) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
297, 27, 28syl2anc 573 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑉}))
308, 24, 9lssats 34821 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
317, 14, 30syl2anc 573 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3226, 29, 313sstr4d 3797 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ {𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑉𝑈)
3332ex 397 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → ({𝑝𝐴𝑝𝑉} ⊆ {𝑝𝐴𝑝𝑈} → 𝑉𝑈))
346, 33syl5bi 232 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) → (∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈) → 𝑉𝑈))
3534con3dimp 395 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
36 dfrex2 3144 . . 3 (∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈) ↔ ¬ ∀𝑝𝐴 ¬ (𝑝𝑉 ∧ ¬ 𝑝𝑈))
3735, 36sylibr 224 . 2 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ ¬ 𝑉𝑈) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
382, 37sylan2 580 1 (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  wss 3723  wpss 3724   cuni 4574  cfv 6031  Basecbs 16064  LModclmod 19073  LSubSpclss 19142  LSpanclspn 19184  LSAtomsclsa 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lsatoms 34785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator