![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrelatglbALT | Structured version Visualization version GIF version |
Description: Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mreclatGOOD.i | ⊢ 𝐼 = (toInc‘𝐶) |
mrelatglbALT.g | ⊢ 𝐺 = (glb‘𝐼) |
Ref | Expression |
---|---|
mrelatglbALT | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mreclatGOOD.i | . 2 ⊢ 𝐼 = (toInc‘𝐶) | |
2 | simp1 1133 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
3 | simp2 1134 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝑈 ⊆ 𝐶) | |
4 | mrelatglbALT.g | . . 3 ⊢ 𝐺 = (glb‘𝐼) | |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → 𝐺 = (glb‘𝐼)) |
6 | mreintcl 17603 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 ∈ 𝐶) | |
7 | unimax 4951 | . . . 4 ⊢ (∩ 𝑈 ∈ 𝐶 → ∪ {𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈} = ∩ 𝑈) | |
8 | 7 | eqcomd 2731 | . . 3 ⊢ (∩ 𝑈 ∈ 𝐶 → ∩ 𝑈 = ∪ {𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈}) |
9 | 6, 8 | syl 17 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → ∩ 𝑈 = ∪ {𝑥 ∈ 𝐶 ∣ 𝑥 ⊆ ∩ 𝑈}) |
10 | 1, 2, 3, 5, 9, 6 | ipoglb 48254 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝐶 ∧ 𝑈 ≠ ∅) → (𝐺‘𝑈) = ∩ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {crab 3418 ⊆ wss 3946 ∅c0 4324 ∪ cuni 4912 ∩ cint 4953 ‘cfv 6553 Moorecmre 17590 glbcglb 18330 toInccipo 18547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-fz 13534 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-tset 17280 df-ple 17281 df-ocomp 17282 df-mre 17594 df-odu 18307 df-proset 18315 df-poset 18333 df-lub 18366 df-glb 18367 df-ipo 18548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |