Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpssat Structured version   Visualization version   GIF version

Theorem lpssat 39013
Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32299 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lpssat.s 𝑆 = (LSubSp‘𝑊)
lpssat.a 𝐴 = (LSAtoms‘𝑊)
lpssat.w (𝜑𝑊 ∈ LMod)
lpssat.t (𝜑𝑇𝑆)
lpssat.u (𝜑𝑈𝑆)
lpssat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lpssat (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem lpssat
StepHypRef Expression
1 lpssat.l . . . 4 (𝜑𝑇𝑈)
2 dfpss3 4055 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈 ∧ ¬ 𝑈𝑇))
32simprbi 496 . . . 4 (𝑇𝑈 → ¬ 𝑈𝑇)
41, 3syl 17 . . 3 (𝜑 → ¬ 𝑈𝑇)
5 iman 401 . . . . 5 ((𝑞𝑈𝑞𝑇) ↔ ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
65ralbii 3076 . . . 4 (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) ↔ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
7 ss2rab 4037 . . . . 5 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} ↔ ∀𝑞𝐴 (𝑞𝑈𝑞𝑇))
8 lpssat.w . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
98adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑊 ∈ LMod)
10 lpssat.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
11 lpssat.a . . . . . . . . . . . 12 𝐴 = (LSAtoms‘𝑊)
1210, 11lsatlss 38996 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐴𝑆)
13 rabss2 4044 . . . . . . . . . . 11 (𝐴𝑆 → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
14 uniss 4882 . . . . . . . . . . 11 ({𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇} → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
158, 12, 13, 144syl 19 . . . . . . . . . 10 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
16 lpssat.t . . . . . . . . . . . 12 (𝜑𝑇𝑆)
17 unimax 4911 . . . . . . . . . . . 12 (𝑇𝑆 {𝑞𝑆𝑞𝑇} = 𝑇)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 {𝑞𝑆𝑞𝑇} = 𝑇)
19 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
2019, 10lssss 20849 . . . . . . . . . . . 12 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝑊))
2218, 21eqsstrd 3984 . . . . . . . . . 10 (𝜑 {𝑞𝑆𝑞𝑇} ⊆ (Base‘𝑊))
2315, 22sstrd 3960 . . . . . . . . 9 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
25 uniss 4882 . . . . . . . . 9 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
2625adantl 481 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
27 eqid 2730 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2819, 27lspss 20897 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊) ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
299, 24, 26, 28syl3anc 1373 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
30 lpssat.u . . . . . . . . 9 (𝜑𝑈𝑆)
3110, 27, 11lssats 39012 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
328, 30, 31syl2anc 584 . . . . . . . 8 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3332adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3410, 27, 11lssats 39012 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
358, 16, 34syl2anc 584 . . . . . . . 8 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3635adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3729, 33, 363sstr4d 4005 . . . . . 6 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈𝑇)
3837ex 412 . . . . 5 (𝜑 → ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → 𝑈𝑇))
397, 38biimtrrid 243 . . . 4 (𝜑 → (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) → 𝑈𝑇))
406, 39biimtrrid 243 . . 3 (𝜑 → (∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇) → 𝑈𝑇))
414, 40mtod 198 . 2 (𝜑 → ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
42 dfrex2 3057 . 2 (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
4341, 42sylibr 234 1 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  wss 3917  wpss 3918   cuni 4874  cfv 6514  Basecbs 17186  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LSAtomsclsa 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lsatoms 38976
This theorem is referenced by:  lrelat  39014  dihglblem6  41341  dochexmidlem8  41468
  Copyright terms: Public domain W3C validator