Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpssat Structured version   Visualization version   GIF version

Theorem lpssat 37027
Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 30725 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lpssat.s 𝑆 = (LSubSp‘𝑊)
lpssat.a 𝐴 = (LSAtoms‘𝑊)
lpssat.w (𝜑𝑊 ∈ LMod)
lpssat.t (𝜑𝑇𝑆)
lpssat.u (𝜑𝑈𝑆)
lpssat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lpssat (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem lpssat
StepHypRef Expression
1 lpssat.l . . . 4 (𝜑𝑇𝑈)
2 dfpss3 4021 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈 ∧ ¬ 𝑈𝑇))
32simprbi 497 . . . 4 (𝑇𝑈 → ¬ 𝑈𝑇)
41, 3syl 17 . . 3 (𝜑 → ¬ 𝑈𝑇)
5 iman 402 . . . . 5 ((𝑞𝑈𝑞𝑇) ↔ ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
65ralbii 3092 . . . 4 (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) ↔ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
7 ss2rab 4004 . . . . 5 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} ↔ ∀𝑞𝐴 (𝑞𝑈𝑞𝑇))
8 lpssat.w . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
98adantr 481 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑊 ∈ LMod)
10 lpssat.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
11 lpssat.a . . . . . . . . . . . 12 𝐴 = (LSAtoms‘𝑊)
1210, 11lsatlss 37010 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐴𝑆)
13 rabss2 4011 . . . . . . . . . . 11 (𝐴𝑆 → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
14 uniss 4847 . . . . . . . . . . 11 ({𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇} → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
158, 12, 13, 144syl 19 . . . . . . . . . 10 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
16 lpssat.t . . . . . . . . . . . 12 (𝜑𝑇𝑆)
17 unimax 4877 . . . . . . . . . . . 12 (𝑇𝑆 {𝑞𝑆𝑞𝑇} = 𝑇)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 {𝑞𝑆𝑞𝑇} = 𝑇)
19 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
2019, 10lssss 20198 . . . . . . . . . . . 12 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝑊))
2218, 21eqsstrd 3959 . . . . . . . . . 10 (𝜑 {𝑞𝑆𝑞𝑇} ⊆ (Base‘𝑊))
2315, 22sstrd 3931 . . . . . . . . 9 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
2423adantr 481 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
25 uniss 4847 . . . . . . . . 9 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
2625adantl 482 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
27 eqid 2738 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2819, 27lspss 20246 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊) ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
299, 24, 26, 28syl3anc 1370 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
30 lpssat.u . . . . . . . . 9 (𝜑𝑈𝑆)
3110, 27, 11lssats 37026 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
328, 30, 31syl2anc 584 . . . . . . . 8 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3332adantr 481 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3410, 27, 11lssats 37026 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
358, 16, 34syl2anc 584 . . . . . . . 8 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3635adantr 481 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3729, 33, 363sstr4d 3968 . . . . . 6 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈𝑇)
3837ex 413 . . . . 5 (𝜑 → ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → 𝑈𝑇))
397, 38syl5bir 242 . . . 4 (𝜑 → (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) → 𝑈𝑇))
406, 39syl5bir 242 . . 3 (𝜑 → (∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇) → 𝑈𝑇))
414, 40mtod 197 . 2 (𝜑 → ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
42 dfrex2 3170 . 2 (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
4341, 42sylibr 233 1 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887  wpss 3888   cuni 4839  cfv 6433  Basecbs 16912  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lsatoms 36990
This theorem is referenced by:  lrelat  37028  dihglblem6  39354  dochexmidlem8  39481
  Copyright terms: Public domain W3C validator