Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpssat Structured version   Visualization version   GIF version

Theorem lpssat 38615
Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32245 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lpssat.s 𝑆 = (LSubSp‘𝑊)
lpssat.a 𝐴 = (LSAtoms‘𝑊)
lpssat.w (𝜑𝑊 ∈ LMod)
lpssat.t (𝜑𝑇𝑆)
lpssat.u (𝜑𝑈𝑆)
lpssat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lpssat (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem lpssat
StepHypRef Expression
1 lpssat.l . . . 4 (𝜑𝑇𝑈)
2 dfpss3 4082 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈 ∧ ¬ 𝑈𝑇))
32simprbi 495 . . . 4 (𝑇𝑈 → ¬ 𝑈𝑇)
41, 3syl 17 . . 3 (𝜑 → ¬ 𝑈𝑇)
5 iman 400 . . . . 5 ((𝑞𝑈𝑞𝑇) ↔ ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
65ralbii 3082 . . . 4 (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) ↔ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
7 ss2rab 4064 . . . . 5 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} ↔ ∀𝑞𝐴 (𝑞𝑈𝑞𝑇))
8 lpssat.w . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
98adantr 479 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑊 ∈ LMod)
10 lpssat.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
11 lpssat.a . . . . . . . . . . . 12 𝐴 = (LSAtoms‘𝑊)
1210, 11lsatlss 38598 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐴𝑆)
13 rabss2 4071 . . . . . . . . . . 11 (𝐴𝑆 → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
14 uniss 4917 . . . . . . . . . . 11 ({𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇} → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
158, 12, 13, 144syl 19 . . . . . . . . . 10 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
16 lpssat.t . . . . . . . . . . . 12 (𝜑𝑇𝑆)
17 unimax 4948 . . . . . . . . . . . 12 (𝑇𝑆 {𝑞𝑆𝑞𝑇} = 𝑇)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 {𝑞𝑆𝑞𝑇} = 𝑇)
19 eqid 2725 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
2019, 10lssss 20832 . . . . . . . . . . . 12 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝑊))
2218, 21eqsstrd 4015 . . . . . . . . . 10 (𝜑 {𝑞𝑆𝑞𝑇} ⊆ (Base‘𝑊))
2315, 22sstrd 3987 . . . . . . . . 9 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
2423adantr 479 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
25 uniss 4917 . . . . . . . . 9 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
2625adantl 480 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
27 eqid 2725 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2819, 27lspss 20880 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊) ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
299, 24, 26, 28syl3anc 1368 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
30 lpssat.u . . . . . . . . 9 (𝜑𝑈𝑆)
3110, 27, 11lssats 38614 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
328, 30, 31syl2anc 582 . . . . . . . 8 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3332adantr 479 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3410, 27, 11lssats 38614 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
358, 16, 34syl2anc 582 . . . . . . . 8 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3635adantr 479 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3729, 33, 363sstr4d 4024 . . . . . 6 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈𝑇)
3837ex 411 . . . . 5 (𝜑 → ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → 𝑈𝑇))
397, 38biimtrrid 242 . . . 4 (𝜑 → (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) → 𝑈𝑇))
406, 39biimtrrid 242 . . 3 (𝜑 → (∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇) → 𝑈𝑇))
414, 40mtod 197 . 2 (𝜑 → ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
42 dfrex2 3062 . 2 (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
4341, 42sylibr 233 1 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  wss 3944  wpss 3945   cuni 4909  cfv 6549  Basecbs 17183  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867  LSAtomsclsa 38576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mgp 20087  df-ur 20134  df-ring 20187  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lsatoms 38578
This theorem is referenced by:  lrelat  38616  dihglblem6  40943  dochexmidlem8  41070
  Copyright terms: Public domain W3C validator