Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpssat Structured version   Visualization version   GIF version

Theorem lpssat 39133
Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32345 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lpssat.s 𝑆 = (LSubSp‘𝑊)
lpssat.a 𝐴 = (LSAtoms‘𝑊)
lpssat.w (𝜑𝑊 ∈ LMod)
lpssat.t (𝜑𝑇𝑆)
lpssat.u (𝜑𝑈𝑆)
lpssat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lpssat (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem lpssat
StepHypRef Expression
1 lpssat.l . . . 4 (𝜑𝑇𝑈)
2 dfpss3 4038 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈 ∧ ¬ 𝑈𝑇))
32simprbi 496 . . . 4 (𝑇𝑈 → ¬ 𝑈𝑇)
41, 3syl 17 . . 3 (𝜑 → ¬ 𝑈𝑇)
5 iman 401 . . . . 5 ((𝑞𝑈𝑞𝑇) ↔ ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
65ralbii 3079 . . . 4 (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) ↔ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
7 ss2rab 4018 . . . . 5 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} ↔ ∀𝑞𝐴 (𝑞𝑈𝑞𝑇))
8 lpssat.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
9 lpssat.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
10 lpssat.a . . . . . . . . . . 11 𝐴 = (LSAtoms‘𝑊)
119, 10lsatlss 39116 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝐴𝑆)
12 rabss2 4026 . . . . . . . . . 10 (𝐴𝑆 → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
13 uniss 4866 . . . . . . . . . 10 ({𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇} → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
148, 11, 12, 134syl 19 . . . . . . . . 9 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
15 lpssat.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
16 unimax 4895 . . . . . . . . . . 11 (𝑇𝑆 {𝑞𝑆𝑞𝑇} = 𝑇)
1715, 16syl 17 . . . . . . . . . 10 (𝜑 {𝑞𝑆𝑞𝑇} = 𝑇)
18 eqid 2733 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
1918, 9lssss 20871 . . . . . . . . . . 11 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
2015, 19syl 17 . . . . . . . . . 10 (𝜑𝑇 ⊆ (Base‘𝑊))
2117, 20eqsstrd 3965 . . . . . . . . 9 (𝜑 {𝑞𝑆𝑞𝑇} ⊆ (Base‘𝑊))
2214, 21sstrd 3941 . . . . . . . 8 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
23 uniss 4866 . . . . . . . 8 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
24 eqid 2733 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2518, 24lspss 20919 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊) ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
268, 22, 23, 25syl2an3an 1424 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
27 lpssat.u . . . . . . . . 9 (𝜑𝑈𝑆)
289, 24, 10lssats 39132 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
298, 27, 28syl2anc 584 . . . . . . . 8 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
319, 24, 10lssats 39132 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
328, 15, 31syl2anc 584 . . . . . . . 8 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3332adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3426, 30, 333sstr4d 3986 . . . . . 6 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈𝑇)
3534ex 412 . . . . 5 (𝜑 → ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → 𝑈𝑇))
367, 35biimtrrid 243 . . . 4 (𝜑 → (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) → 𝑈𝑇))
376, 36biimtrrid 243 . . 3 (𝜑 → (∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇) → 𝑈𝑇))
384, 37mtod 198 . 2 (𝜑 → ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
39 dfrex2 3060 . 2 (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
4038, 39sylibr 234 1 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  wss 3898  wpss 3899   cuni 4858  cfv 6486  Basecbs 17122  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LSAtomsclsa 39094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lsatoms 39096
This theorem is referenced by:  lrelat  39134  dihglblem6  41460  dochexmidlem8  41587
  Copyright terms: Public domain W3C validator