Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpssat Structured version   Visualization version   GIF version

Theorem lpssat 38994
Description: Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32325 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lpssat.s 𝑆 = (LSubSp‘𝑊)
lpssat.a 𝐴 = (LSAtoms‘𝑊)
lpssat.w (𝜑𝑊 ∈ LMod)
lpssat.t (𝜑𝑇𝑆)
lpssat.u (𝜑𝑈𝑆)
lpssat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lpssat (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem lpssat
StepHypRef Expression
1 lpssat.l . . . 4 (𝜑𝑇𝑈)
2 dfpss3 4042 . . . . 5 (𝑇𝑈 ↔ (𝑇𝑈 ∧ ¬ 𝑈𝑇))
32simprbi 496 . . . 4 (𝑇𝑈 → ¬ 𝑈𝑇)
41, 3syl 17 . . 3 (𝜑 → ¬ 𝑈𝑇)
5 iman 401 . . . . 5 ((𝑞𝑈𝑞𝑇) ↔ ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
65ralbii 3075 . . . 4 (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) ↔ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
7 ss2rab 4024 . . . . 5 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} ↔ ∀𝑞𝐴 (𝑞𝑈𝑞𝑇))
8 lpssat.w . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
98adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑊 ∈ LMod)
10 lpssat.s . . . . . . . . . . . 12 𝑆 = (LSubSp‘𝑊)
11 lpssat.a . . . . . . . . . . . 12 𝐴 = (LSAtoms‘𝑊)
1210, 11lsatlss 38977 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐴𝑆)
13 rabss2 4031 . . . . . . . . . . 11 (𝐴𝑆 → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
14 uniss 4869 . . . . . . . . . . 11 ({𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇} → {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
158, 12, 13, 144syl 19 . . . . . . . . . 10 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ {𝑞𝑆𝑞𝑇})
16 lpssat.t . . . . . . . . . . . 12 (𝜑𝑇𝑆)
17 unimax 4897 . . . . . . . . . . . 12 (𝑇𝑆 {𝑞𝑆𝑞𝑇} = 𝑇)
1816, 17syl 17 . . . . . . . . . . 11 (𝜑 {𝑞𝑆𝑞𝑇} = 𝑇)
19 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑊) = (Base‘𝑊)
2019, 10lssss 20857 . . . . . . . . . . . 12 (𝑇𝑆𝑇 ⊆ (Base‘𝑊))
2116, 20syl 17 . . . . . . . . . . 11 (𝜑𝑇 ⊆ (Base‘𝑊))
2218, 21eqsstrd 3972 . . . . . . . . . 10 (𝜑 {𝑞𝑆𝑞𝑇} ⊆ (Base‘𝑊))
2315, 22sstrd 3948 . . . . . . . . 9 (𝜑 {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊))
25 uniss 4869 . . . . . . . . 9 ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
2625adantl 481 . . . . . . . 8 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇})
27 eqid 2729 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
2819, 27lspss 20905 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑞𝐴𝑞𝑇} ⊆ (Base‘𝑊) ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
299, 24, 26, 28syl3anc 1373 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}) ⊆ ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
30 lpssat.u . . . . . . . . 9 (𝜑𝑈𝑆)
3110, 27, 11lssats 38993 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
328, 30, 31syl2anc 584 . . . . . . . 8 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3332adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑈}))
3410, 27, 11lssats 38993 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
358, 16, 34syl2anc 584 . . . . . . . 8 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3635adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑇 = ((LSpan‘𝑊)‘ {𝑞𝐴𝑞𝑇}))
3729, 33, 363sstr4d 3993 . . . . . 6 ((𝜑 ∧ {𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇}) → 𝑈𝑇)
3837ex 412 . . . . 5 (𝜑 → ({𝑞𝐴𝑞𝑈} ⊆ {𝑞𝐴𝑞𝑇} → 𝑈𝑇))
397, 38biimtrrid 243 . . . 4 (𝜑 → (∀𝑞𝐴 (𝑞𝑈𝑞𝑇) → 𝑈𝑇))
406, 39biimtrrid 243 . . 3 (𝜑 → (∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇) → 𝑈𝑇))
414, 40mtod 198 . 2 (𝜑 → ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
42 dfrex2 3056 . 2 (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ¬ ∀𝑞𝐴 ¬ (𝑞𝑈 ∧ ¬ 𝑞𝑇))
4341, 42sylibr 234 1 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905  wpss 3906   cuni 4861  cfv 6486  Basecbs 17138  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LSAtomsclsa 38955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lsatoms 38957
This theorem is referenced by:  lrelat  38995  dihglblem6  41322  dochexmidlem8  41449
  Copyright terms: Public domain W3C validator