Proof of Theorem lpssat
| Step | Hyp | Ref
| Expression |
| 1 | | lpssat.l |
. . . 4
⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
| 2 | | dfpss3 4038 |
. . . . 5
⊢ (𝑇 ⊊ 𝑈 ↔ (𝑇 ⊆ 𝑈 ∧ ¬ 𝑈 ⊆ 𝑇)) |
| 3 | 2 | simprbi 496 |
. . . 4
⊢ (𝑇 ⊊ 𝑈 → ¬ 𝑈 ⊆ 𝑇) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → ¬ 𝑈 ⊆ 𝑇) |
| 5 | | iman 401 |
. . . . 5
⊢ ((𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇) ↔ ¬ (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
| 6 | 5 | ralbii 3079 |
. . . 4
⊢
(∀𝑞 ∈
𝐴 (𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇) ↔ ∀𝑞 ∈ 𝐴 ¬ (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
| 7 | | ss2rab 4018 |
. . . . 5
⊢ ({𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ↔ ∀𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇)) |
| 8 | | lpssat.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | | lpssat.s |
. . . . . . . . . . 11
⊢ 𝑆 = (LSubSp‘𝑊) |
| 10 | | lpssat.a |
. . . . . . . . . . 11
⊢ 𝐴 = (LSAtoms‘𝑊) |
| 11 | 9, 10 | lsatlss 39116 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
| 12 | | rabss2 4026 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝑆 → {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ {𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇}) |
| 13 | | uniss 4866 |
. . . . . . . . . 10
⊢ ({𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ {𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇} → ∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ ∪
{𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇}) |
| 14 | 8, 11, 12, 13 | 4syl 19 |
. . . . . . . . 9
⊢ (𝜑 → ∪ {𝑞
∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ ∪
{𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇}) |
| 15 | | lpssat.t |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 16 | | unimax 4895 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → ∪ {𝑞 ∈ 𝑆 ∣ 𝑞 ⊆ 𝑇} = 𝑇) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ {𝑞
∈ 𝑆 ∣ 𝑞 ⊆ 𝑇} = 𝑇) |
| 18 | | eqid 2733 |
. . . . . . . . . . . 12
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 19 | 18, 9 | lssss 20871 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → 𝑇 ⊆ (Base‘𝑊)) |
| 20 | 15, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑊)) |
| 21 | 17, 20 | eqsstrd 3965 |
. . . . . . . . 9
⊢ (𝜑 → ∪ {𝑞
∈ 𝑆 ∣ 𝑞 ⊆ 𝑇} ⊆ (Base‘𝑊)) |
| 22 | 14, 21 | sstrd 3941 |
. . . . . . . 8
⊢ (𝜑 → ∪ {𝑞
∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ (Base‘𝑊)) |
| 23 | | uniss 4866 |
. . . . . . . 8
⊢ ({𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} → ∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ ∪
{𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) |
| 24 | | eqid 2733 |
. . . . . . . . 9
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 25 | 18, 24 | lspss 20919 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑞
∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} ⊆ (Base‘𝑊) ∧ ∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ ∪
{𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) → ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈}) ⊆ ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇})) |
| 26 | 8, 22, 23, 25 | syl2an3an 1424 |
. . . . . . 7
⊢ ((𝜑 ∧ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) → ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈}) ⊆ ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇})) |
| 27 | | lpssat.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 28 | 9, 24, 10 | lssats 39132 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈})) |
| 29 | 8, 27, 28 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈})) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈})) |
| 31 | 9, 24, 10 | lssats 39132 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇})) |
| 32 | 8, 15, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇})) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇})) |
| 34 | 26, 30, 33 | 3sstr4d 3986 |
. . . . . 6
⊢ ((𝜑 ∧ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇}) → 𝑈 ⊆ 𝑇) |
| 35 | 34 | ex 412 |
. . . . 5
⊢ (𝜑 → ({𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑈} ⊆ {𝑞 ∈ 𝐴 ∣ 𝑞 ⊆ 𝑇} → 𝑈 ⊆ 𝑇)) |
| 36 | 7, 35 | biimtrrid 243 |
. . . 4
⊢ (𝜑 → (∀𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 → 𝑞 ⊆ 𝑇) → 𝑈 ⊆ 𝑇)) |
| 37 | 6, 36 | biimtrrid 243 |
. . 3
⊢ (𝜑 → (∀𝑞 ∈ 𝐴 ¬ (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) → 𝑈 ⊆ 𝑇)) |
| 38 | 4, 37 | mtod 198 |
. 2
⊢ (𝜑 → ¬ ∀𝑞 ∈ 𝐴 ¬ (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
| 39 | | dfrex2 3060 |
. 2
⊢
(∃𝑞 ∈
𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ ¬ ∀𝑞 ∈ 𝐴 ¬ (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
| 40 | 38, 39 | sylibr 234 |
1
⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |