Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatle | Structured version Visualization version GIF version |
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 30253 analog.) (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lssatle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatle.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatle.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lssatle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssatle | ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3900 | . . . 4 ⊢ ((𝑝 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝑝 ⊆ 𝑈) | |
2 | 1 | expcom 417 | . . 3 ⊢ (𝑇 ⊆ 𝑈 → (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
3 | 2 | ralrimivw 3114 | . 2 ⊢ (𝑇 ⊆ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
4 | ss2rab 3975 | . . 3 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) | |
5 | lssatle.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | 5 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
7 | lssatle.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | lssatle.a | . . . . . . . . . 10 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
9 | 7, 8 | lsatlss 36572 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
10 | rabss2 3982 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
11 | uniss 4806 | . . . . . . . . 9 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
12 | 5, 9, 10, 11 | 4syl 19 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
13 | lssatle.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
14 | unimax 4836 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
16 | eqid 2758 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | 16, 7 | lssss 19776 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
19 | 15, 18 | eqsstrd 3930 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
20 | 12, 19 | sstrd 3902 | . . . . . . 7 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
21 | 20 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
22 | uniss 4806 | . . . . . . 7 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) | |
23 | 22 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
24 | eqid 2758 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
25 | 16, 24 | lspss 19824 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
26 | 6, 21, 23, 25 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
27 | 26 | ex 416 | . . . 4 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
28 | lssatle.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
29 | 7, 24, 8 | lssats 36588 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
30 | 5, 28, 29 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
31 | 7, 24, 8 | lssats 36588 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
32 | 5, 13, 31 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
33 | 30, 32 | sseq12d 3925 | . . . 4 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
34 | 27, 33 | sylibrd 262 | . . 3 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑇 ⊆ 𝑈)) |
35 | 4, 34 | syl5bir 246 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈) → 𝑇 ⊆ 𝑈)) |
36 | 3, 35 | impbid2 229 | 1 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 ⊆ wss 3858 ∪ cuni 4798 ‘cfv 6335 Basecbs 16541 LModclmod 19702 LSubSpclss 19771 LSpanclspn 19811 LSAtomsclsa 36550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mgp 19308 df-ur 19320 df-ring 19367 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lsatoms 36552 |
This theorem is referenced by: mapdordlem2 39213 |
Copyright terms: Public domain | W3C validator |