Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatle Structured version   Visualization version   GIF version

Theorem lssatle 36591
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 30253 analog.) (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lssatle.s 𝑆 = (LSubSp‘𝑊)
lssatle.a 𝐴 = (LSAtoms‘𝑊)
lssatle.w (𝜑𝑊 ∈ LMod)
lssatle.t (𝜑𝑇𝑆)
lssatle.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssatle (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem lssatle
StepHypRef Expression
1 sstr 3900 . . . 4 ((𝑝𝑇𝑇𝑈) → 𝑝𝑈)
21expcom 417 . . 3 (𝑇𝑈 → (𝑝𝑇𝑝𝑈))
32ralrimivw 3114 . 2 (𝑇𝑈 → ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
4 ss2rab 3975 . . 3 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
5 lssatle.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
65adantr 484 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
7 lssatle.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
8 lssatle.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑊)
97, 8lsatlss 36572 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐴𝑆)
10 rabss2 3982 . . . . . . . . 9 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
11 uniss 4806 . . . . . . . . 9 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
125, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
13 lssatle.u . . . . . . . . . 10 (𝜑𝑈𝑆)
14 unimax 4836 . . . . . . . . . 10 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1513, 14syl 17 . . . . . . . . 9 (𝜑 {𝑝𝑆𝑝𝑈} = 𝑈)
16 eqid 2758 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
1716, 7lssss 19776 . . . . . . . . . 10 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1813, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ⊆ (Base‘𝑊))
1915, 18eqsstrd 3930 . . . . . . . 8 (𝜑 {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2012, 19sstrd 3902 . . . . . . 7 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
2120adantr 484 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4806 . . . . . . 7 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 485 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2758 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
2516, 24lspss 19824 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
266, 21, 23, 25syl3anc 1368 . . . . 5 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
2726ex 416 . . . 4 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
28 lssatle.t . . . . . 6 (𝜑𝑇𝑆)
297, 24, 8lssats 36588 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
305, 28, 29syl2anc 587 . . . . 5 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
317, 24, 8lssats 36588 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
325, 13, 31syl2anc 587 . . . . 5 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3330, 32sseq12d 3925 . . . 4 (𝜑 → (𝑇𝑈 ↔ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
3427, 33sylibrd 262 . . 3 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → 𝑇𝑈))
354, 34syl5bir 246 . 2 (𝜑 → (∀𝑝𝐴 (𝑝𝑇𝑝𝑈) → 𝑇𝑈))
363, 35impbid2 229 1 (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  {crab 3074  wss 3858   cuni 4798  cfv 6335  Basecbs 16541  LModclmod 19702  LSubSpclss 19771  LSpanclspn 19811  LSAtomsclsa 36550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mgp 19308  df-ur 19320  df-ring 19367  df-lmod 19704  df-lss 19772  df-lsp 19812  df-lsatoms 36552
This theorem is referenced by:  mapdordlem2  39213
  Copyright terms: Public domain W3C validator