Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatle | Structured version Visualization version GIF version |
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 31021 analog.) (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lssatle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatle.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatle.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lssatle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssatle | ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3940 | . . . 4 ⊢ ((𝑝 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝑝 ⊆ 𝑈) | |
2 | 1 | expcom 414 | . . 3 ⊢ (𝑇 ⊆ 𝑈 → (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
3 | 2 | ralrimivw 3143 | . 2 ⊢ (𝑇 ⊆ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
4 | ss2rab 4016 | . . 3 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) | |
5 | lssatle.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
7 | lssatle.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | lssatle.a | . . . . . . . . . 10 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
9 | 7, 8 | lsatlss 37271 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
10 | rabss2 4023 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
11 | uniss 4860 | . . . . . . . . 9 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
12 | 5, 9, 10, 11 | 4syl 19 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
13 | lssatle.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
14 | unimax 4892 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
16 | eqid 2736 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | 16, 7 | lssss 20304 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
19 | 15, 18 | eqsstrd 3970 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
20 | 12, 19 | sstrd 3942 | . . . . . . 7 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
22 | uniss 4860 | . . . . . . 7 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) | |
23 | 22 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
24 | eqid 2736 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
25 | 16, 24 | lspss 20352 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
26 | 6, 21, 23, 25 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
27 | 26 | ex 413 | . . . 4 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
28 | lssatle.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
29 | 7, 24, 8 | lssats 37287 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
30 | 5, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
31 | 7, 24, 8 | lssats 37287 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
32 | 5, 13, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
33 | 30, 32 | sseq12d 3965 | . . . 4 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
34 | 27, 33 | sylibrd 258 | . . 3 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑇 ⊆ 𝑈)) |
35 | 4, 34 | syl5bir 242 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈) → 𝑇 ⊆ 𝑈)) |
36 | 3, 35 | impbid2 225 | 1 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 ⊆ wss 3898 ∪ cuni 4852 ‘cfv 6479 Basecbs 17009 LModclmod 20229 LSubSpclss 20299 LSpanclspn 20339 LSAtomsclsa 37249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-mgp 19816 df-ur 19833 df-ring 19880 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lsatoms 37251 |
This theorem is referenced by: mapdordlem2 39913 |
Copyright terms: Public domain | W3C validator |