| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatle | Structured version Visualization version GIF version | ||
| Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 32352 analog.) (Contributed by NM, 29-Oct-2014.) |
| Ref | Expression |
|---|---|
| lssatle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssatle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lssatle.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lssatle.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lssatle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lssatle | ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr 3967 | . . . 4 ⊢ ((𝑝 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝑝 ⊆ 𝑈) | |
| 2 | 1 | expcom 413 | . . 3 ⊢ (𝑇 ⊆ 𝑈 → (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
| 3 | 2 | ralrimivw 3136 | . 2 ⊢ (𝑇 ⊆ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
| 4 | ss2rab 4046 | . . 3 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) | |
| 5 | lssatle.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
| 7 | lssatle.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | lssatle.a | . . . . . . . . . 10 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 9 | 7, 8 | lsatlss 39014 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
| 10 | rabss2 4053 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
| 11 | uniss 4891 | . . . . . . . . 9 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
| 12 | 5, 9, 10, 11 | 4syl 19 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
| 13 | lssatle.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 14 | unimax 4920 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
| 16 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 17 | 16, 7 | lssss 20893 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
| 19 | 15, 18 | eqsstrd 3993 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
| 20 | 12, 19 | sstrd 3969 | . . . . . . 7 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
| 22 | uniss 4891 | . . . . . . 7 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) | |
| 23 | 22 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
| 24 | eqid 2735 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 25 | 16, 24 | lspss 20941 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 26 | 6, 21, 23, 25 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 27 | 26 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
| 28 | lssatle.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 29 | 7, 24, 8 | lssats 39030 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
| 30 | 5, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
| 31 | 7, 24, 8 | lssats 39030 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 32 | 5, 13, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
| 33 | 30, 32 | sseq12d 3992 | . . . 4 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
| 34 | 27, 33 | sylibrd 259 | . . 3 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑇 ⊆ 𝑈)) |
| 35 | 4, 34 | biimtrrid 243 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈) → 𝑇 ⊆ 𝑈)) |
| 36 | 3, 35 | impbid2 226 | 1 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6531 Basecbs 17228 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 LSAtomsclsa 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lsatoms 38994 |
| This theorem is referenced by: mapdordlem2 41656 |
| Copyright terms: Public domain | W3C validator |