Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatle Structured version   Visualization version   GIF version

Theorem lssatle 35036
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 29755 analog.) (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lssatle.s 𝑆 = (LSubSp‘𝑊)
lssatle.a 𝐴 = (LSAtoms‘𝑊)
lssatle.w (𝜑𝑊 ∈ LMod)
lssatle.t (𝜑𝑇𝑆)
lssatle.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssatle (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem lssatle
StepHypRef Expression
1 sstr 3806 . . . 4 ((𝑝𝑇𝑇𝑈) → 𝑝𝑈)
21expcom 403 . . 3 (𝑇𝑈 → (𝑝𝑇𝑝𝑈))
32ralrimivw 3148 . 2 (𝑇𝑈 → ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
4 ss2rab 3874 . . 3 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
5 lssatle.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
65adantr 473 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
7 lssatle.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
8 lssatle.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑊)
97, 8lsatlss 35017 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐴𝑆)
10 rabss2 3881 . . . . . . . . 9 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
11 uniss 4651 . . . . . . . . 9 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
125, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
13 lssatle.u . . . . . . . . . 10 (𝜑𝑈𝑆)
14 unimax 4665 . . . . . . . . . 10 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1513, 14syl 17 . . . . . . . . 9 (𝜑 {𝑝𝑆𝑝𝑈} = 𝑈)
16 eqid 2799 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
1716, 7lssss 19255 . . . . . . . . . 10 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1813, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ⊆ (Base‘𝑊))
1915, 18eqsstrd 3835 . . . . . . . 8 (𝜑 {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2012, 19sstrd 3808 . . . . . . 7 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
2120adantr 473 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4651 . . . . . . 7 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 474 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2799 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
2516, 24lspss 19305 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
266, 21, 23, 25syl3anc 1491 . . . . 5 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
2726ex 402 . . . 4 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
28 lssatle.t . . . . . 6 (𝜑𝑇𝑆)
297, 24, 8lssats 35033 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
305, 28, 29syl2anc 580 . . . . 5 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
317, 24, 8lssats 35033 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
325, 13, 31syl2anc 580 . . . . 5 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3330, 32sseq12d 3830 . . . 4 (𝜑 → (𝑇𝑈 ↔ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
3427, 33sylibrd 251 . . 3 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → 𝑇𝑈))
354, 34syl5bir 235 . 2 (𝜑 → (∀𝑝𝐴 (𝑝𝑇𝑝𝑈) → 𝑇𝑈))
363, 35impbid2 218 1 (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  {crab 3093  wss 3769   cuni 4628  cfv 6101  Basecbs 16184  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  LSAtomsclsa 34995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mgp 18806  df-ur 18818  df-ring 18865  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lsatoms 34997
This theorem is referenced by:  mapdordlem2  37658
  Copyright terms: Public domain W3C validator