![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatle | Structured version Visualization version GIF version |
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 32307 analog.) (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lssatle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatle.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatle.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lssatle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssatle | ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3988 | . . . 4 ⊢ ((𝑝 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝑝 ⊆ 𝑈) | |
2 | 1 | expcom 412 | . . 3 ⊢ (𝑇 ⊆ 𝑈 → (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
3 | 2 | ralrimivw 3140 | . 2 ⊢ (𝑇 ⊆ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
4 | ss2rab 4067 | . . 3 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) | |
5 | lssatle.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | 5 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
7 | lssatle.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | lssatle.a | . . . . . . . . . 10 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
9 | 7, 8 | lsatlss 38696 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
10 | rabss2 4074 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
11 | uniss 4923 | . . . . . . . . 9 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
12 | 5, 9, 10, 11 | 4syl 19 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
13 | lssatle.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
14 | unimax 4954 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
16 | eqid 2726 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | 16, 7 | lssss 20915 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
19 | 15, 18 | eqsstrd 4018 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
20 | 12, 19 | sstrd 3990 | . . . . . . 7 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
21 | 20 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
22 | uniss 4923 | . . . . . . 7 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) | |
23 | 22 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
24 | eqid 2726 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
25 | 16, 24 | lspss 20963 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
26 | 6, 21, 23, 25 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
27 | 26 | ex 411 | . . . 4 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
28 | lssatle.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
29 | 7, 24, 8 | lssats 38712 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
30 | 5, 28, 29 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
31 | 7, 24, 8 | lssats 38712 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
32 | 5, 13, 31 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
33 | 30, 32 | sseq12d 4013 | . . . 4 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
34 | 27, 33 | sylibrd 258 | . . 3 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑇 ⊆ 𝑈)) |
35 | 4, 34 | biimtrrid 242 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈) → 𝑇 ⊆ 𝑈)) |
36 | 3, 35 | impbid2 225 | 1 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 ⊆ wss 3947 ∪ cuni 4915 ‘cfv 6556 Basecbs 17215 LModclmod 20838 LSubSpclss 20910 LSpanclspn 20950 LSAtomsclsa 38674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-plusg 17281 df-0g 17458 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-grp 18933 df-minusg 18934 df-sbg 18935 df-mgp 20120 df-ur 20167 df-ring 20220 df-lmod 20840 df-lss 20911 df-lsp 20951 df-lsatoms 38676 |
This theorem is referenced by: mapdordlem2 41338 |
Copyright terms: Public domain | W3C validator |