Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatle | Structured version Visualization version GIF version |
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 30733 analog.) (Contributed by NM, 29-Oct-2014.) |
Ref | Expression |
---|---|
lssatle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatle.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatle.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lssatle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Ref | Expression |
---|---|
lssatle | ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3929 | . . . 4 ⊢ ((𝑝 ⊆ 𝑇 ∧ 𝑇 ⊆ 𝑈) → 𝑝 ⊆ 𝑈) | |
2 | 1 | expcom 414 | . . 3 ⊢ (𝑇 ⊆ 𝑈 → (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
3 | 2 | ralrimivw 3104 | . 2 ⊢ (𝑇 ⊆ 𝑈 → ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) |
4 | ss2rab 4004 | . . 3 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈)) | |
5 | lssatle.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → 𝑊 ∈ LMod) |
7 | lssatle.s | . . . . . . . . . 10 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | lssatle.a | . . . . . . . . . 10 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
9 | 7, 8 | lsatlss 37010 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) |
10 | rabss2 4011 | . . . . . . . . 9 ⊢ (𝐴 ⊆ 𝑆 → {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
11 | uniss 4847 | . . . . . . . . 9 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) | |
12 | 5, 9, 10, 11 | 4syl 19 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈}) |
13 | lssatle.u | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
14 | unimax 4877 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} = 𝑈) |
16 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
17 | 16, 7 | lssss 20198 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
18 | 13, 17 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑊)) |
19 | 15, 18 | eqsstrd 3959 | . . . . . . . 8 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝑆 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
20 | 12, 19 | sstrd 3931 | . . . . . . 7 ⊢ (𝜑 → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊)) |
22 | uniss 4847 | . . . . . . 7 ⊢ ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) | |
23 | 22 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) |
24 | eqid 2738 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
25 | 16, 24 | lspss 20246 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} ⊆ (Base‘𝑊) ∧ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ ∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
26 | 6, 21, 23, 25 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}) → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
27 | 26 | ex 413 | . . . 4 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
28 | lssatle.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
29 | 7, 24, 8 | lssats 37026 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆) → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
30 | 5, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑇 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇})) |
31 | 7, 24, 8 | lssats 37026 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
32 | 5, 13, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑈 = ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈})) |
33 | 30, 32 | sseq12d 3954 | . . . 4 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇}) ⊆ ((LSpan‘𝑊)‘∪ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈}))) |
34 | 27, 33 | sylibrd 258 | . . 3 ⊢ (𝜑 → ({𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑇} ⊆ {𝑝 ∈ 𝐴 ∣ 𝑝 ⊆ 𝑈} → 𝑇 ⊆ 𝑈)) |
35 | 4, 34 | syl5bir 242 | . 2 ⊢ (𝜑 → (∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈) → 𝑇 ⊆ 𝑈)) |
36 | 3, 35 | impbid2 225 | 1 ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 LSAtomsclsa 36988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lsatoms 36990 |
This theorem is referenced by: mapdordlem2 39651 |
Copyright terms: Public domain | W3C validator |