Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatle Structured version   Visualization version   GIF version

Theorem lssatle 38996
Description: The ordering of two subspaces is determined by the atoms under them. (chrelat3 32399 analog.) (Contributed by NM, 29-Oct-2014.)
Hypotheses
Ref Expression
lssatle.s 𝑆 = (LSubSp‘𝑊)
lssatle.a 𝐴 = (LSAtoms‘𝑊)
lssatle.w (𝜑𝑊 ∈ LMod)
lssatle.t (𝜑𝑇𝑆)
lssatle.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lssatle (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Distinct variable groups:   𝐴,𝑝   𝑆,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem lssatle
StepHypRef Expression
1 sstr 4003 . . . 4 ((𝑝𝑇𝑇𝑈) → 𝑝𝑈)
21expcom 413 . . 3 (𝑇𝑈 → (𝑝𝑇𝑝𝑈))
32ralrimivw 3147 . 2 (𝑇𝑈 → ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
4 ss2rab 4080 . . 3 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈))
5 lssatle.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
65adantr 480 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → 𝑊 ∈ LMod)
7 lssatle.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
8 lssatle.a . . . . . . . . . 10 𝐴 = (LSAtoms‘𝑊)
97, 8lsatlss 38977 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐴𝑆)
10 rabss2 4087 . . . . . . . . 9 (𝐴𝑆 → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
11 uniss 4919 . . . . . . . . 9 ({𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈} → {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
125, 9, 10, 114syl 19 . . . . . . . 8 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ {𝑝𝑆𝑝𝑈})
13 lssatle.u . . . . . . . . . 10 (𝜑𝑈𝑆)
14 unimax 4948 . . . . . . . . . 10 (𝑈𝑆 {𝑝𝑆𝑝𝑈} = 𝑈)
1513, 14syl 17 . . . . . . . . 9 (𝜑 {𝑝𝑆𝑝𝑈} = 𝑈)
16 eqid 2734 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
1716, 7lssss 20951 . . . . . . . . . 10 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1813, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ⊆ (Base‘𝑊))
1915, 18eqsstrd 4033 . . . . . . . 8 (𝜑 {𝑝𝑆𝑝𝑈} ⊆ (Base‘𝑊))
2012, 19sstrd 4005 . . . . . . 7 (𝜑 {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
2120adantr 480 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊))
22 uniss 4919 . . . . . . 7 ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
2322adantl 481 . . . . . 6 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈})
24 eqid 2734 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
2516, 24lspss 20999 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑝𝐴𝑝𝑈} ⊆ (Base‘𝑊) ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
266, 21, 23, 25syl3anc 1370 . . . . 5 ((𝜑 ∧ {𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈}) → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
2726ex 412 . . . 4 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
28 lssatle.t . . . . . 6 (𝜑𝑇𝑆)
297, 24, 8lssats 38993 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
305, 28, 29syl2anc 584 . . . . 5 (𝜑𝑇 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}))
317, 24, 8lssats 38993 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
325, 13, 31syl2anc 584 . . . . 5 (𝜑𝑈 = ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈}))
3330, 32sseq12d 4028 . . . 4 (𝜑 → (𝑇𝑈 ↔ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑇}) ⊆ ((LSpan‘𝑊)‘ {𝑝𝐴𝑝𝑈})))
3427, 33sylibrd 259 . . 3 (𝜑 → ({𝑝𝐴𝑝𝑇} ⊆ {𝑝𝐴𝑝𝑈} → 𝑇𝑈))
354, 34biimtrrid 243 . 2 (𝜑 → (∀𝑝𝐴 (𝑝𝑇𝑝𝑈) → 𝑇𝑈))
363, 35impbid2 226 1 (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  {crab 3432  wss 3962   cuni 4911  cfv 6562  Basecbs 17244  LModclmod 20874  LSubSpclss 20946  LSpanclspn 20986  LSAtomsclsa 38955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mgp 20152  df-ur 20199  df-ring 20252  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lsatoms 38957
This theorem is referenced by:  mapdordlem2  41619
  Copyright terms: Public domain W3C validator