| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3648 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 |
| This theorem is referenced by: unimax 4894 fnelfp 7111 fnelnfp 7113 fnse 8066 fin23lem30 10236 isf32lem5 10251 negn0 11549 ublbneg 12834 supminf 12836 sadval 16367 smuval 16392 dvdslcm 16509 dvdslcmf 16542 isprm2lem 16592 isacs1i 17563 isinito 17903 istermo 17904 subgacs 19040 nsgacs 19041 odngen 19456 sdrgacs 20686 lssacs 20870 mretopd 22977 txkgen 23537 xkoco1cn 23542 xkoco2cn 23543 xkoinjcn 23572 ordthmeolem 23686 shft2rab 25407 sca2rab 25411 lhop1lem 25916 ftalem5 26985 vmasum 27125 eqscut2 27717 elmade 27781 israg 28642 ebtwntg 28927 eupth2lem3lem3 30174 eupth2lem3lem4 30175 eupth2lem3lem6 30177 cycpmco2lem1 33068 cycpmco2lem4 33071 cycpmco2 33075 ssdifidllem 33393 1arithufdlem2 33482 tgoldbachgt 34631 cvmliftmolem1 35254 neibastop3 36336 fdc 37725 pclvalN 39869 dvhb1dimN 40965 hdmaplkr 41892 aks4d1p8 42060 sticksstones1 42119 fsuppssind 42566 diophren 42786 islmodfg 43042 fsovcnvlem 43986 ntrneiel 44054 radcnvrat 44287 supminfxr 45443 stoweidlem34 46015 |
| Copyright terms: Public domain | W3C validator |