| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3656 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 |
| This theorem is referenced by: unimax 4904 fnelfp 7131 fnelnfp 7133 fnse 8089 fin23lem30 10271 isf32lem5 10286 negn0 11583 ublbneg 12868 supminf 12870 sadval 16402 smuval 16427 dvdslcm 16544 dvdslcmf 16577 isprm2lem 16627 isacs1i 17594 isinito 17934 istermo 17935 subgacs 19069 nsgacs 19070 odngen 19483 sdrgacs 20686 lssacs 20849 mretopd 22955 txkgen 23515 xkoco1cn 23520 xkoco2cn 23521 xkoinjcn 23550 ordthmeolem 23664 shft2rab 25385 sca2rab 25389 lhop1lem 25894 ftalem5 26963 vmasum 27103 eqscut2 27694 elmade 27755 israg 28600 ebtwntg 28885 eupth2lem3lem3 30132 eupth2lem3lem4 30133 eupth2lem3lem6 30135 cycpmco2lem1 33056 cycpmco2lem4 33059 cycpmco2 33063 ssdifidllem 33400 1arithufdlem2 33489 tgoldbachgt 34627 cvmliftmolem1 35241 neibastop3 36323 fdc 37712 pclvalN 39857 dvhb1dimN 40953 hdmaplkr 41880 aks4d1p8 42048 sticksstones1 42107 fsuppssind 42554 diophren 42774 islmodfg 43031 fsovcnvlem 43975 ntrneiel 44043 radcnvrat 44276 supminfxr 45433 stoweidlem34 46005 |
| Copyright terms: Public domain | W3C validator |