![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3684 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 534 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {crab 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 |
This theorem is referenced by: unimax 4949 fnelfp 7176 fnelnfp 7178 fnse 8123 fin23lem30 10341 isf32lem5 10356 negn0 11649 ublbneg 12923 supminf 12925 sadval 16403 smuval 16428 dvdslcm 16541 dvdslcmf 16574 isprm2lem 16624 isacs1i 17607 isinito 17952 istermo 17953 subgacs 19079 nsgacs 19080 odngen 19488 sdrgacs 20562 lssacs 20724 mretopd 22818 txkgen 23378 xkoco1cn 23383 xkoco2cn 23384 xkoinjcn 23413 ordthmeolem 23527 shft2rab 25259 sca2rab 25263 lhop1lem 25764 ftalem5 26815 vmasum 26953 eqscut2 27542 elmade 27597 israg 28213 ebtwntg 28505 eupth2lem3lem3 29748 eupth2lem3lem4 29749 eupth2lem3lem6 29751 cycpmco2lem1 32553 cycpmco2lem4 32556 cycpmco2 32560 tgoldbachgt 33971 cvmliftmolem1 34568 neibastop3 35552 fdc 36918 pclvalN 39066 dvhb1dimN 40162 hdmaplkr 41089 aks4d1p8 41260 sticksstones1 41270 fsuppssind 41469 diophren 41855 islmodfg 42115 fsovcnvlem 43068 ntrneiel 43136 radcnvrat 43377 supminfxr 44474 stoweidlem34 45050 |
Copyright terms: Public domain | W3C validator |