![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3695 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 |
This theorem is referenced by: unimax 4949 fnelfp 7195 fnelnfp 7197 fnse 8157 fin23lem30 10380 isf32lem5 10395 negn0 11690 ublbneg 12973 supminf 12975 sadval 16490 smuval 16515 dvdslcm 16632 dvdslcmf 16665 isprm2lem 16715 isacs1i 17702 isinito 18050 istermo 18051 subgacs 19192 nsgacs 19193 odngen 19610 sdrgacs 20819 lssacs 20983 mretopd 23116 txkgen 23676 xkoco1cn 23681 xkoco2cn 23682 xkoinjcn 23711 ordthmeolem 23825 shft2rab 25557 sca2rab 25561 lhop1lem 26067 ftalem5 27135 vmasum 27275 eqscut2 27866 elmade 27921 israg 28720 ebtwntg 29012 eupth2lem3lem3 30259 eupth2lem3lem4 30260 eupth2lem3lem6 30262 cycpmco2lem1 33129 cycpmco2lem4 33132 cycpmco2 33136 ssdifidllem 33464 1arithufdlem2 33553 tgoldbachgt 34657 cvmliftmolem1 35266 neibastop3 36345 fdc 37732 pclvalN 39873 dvhb1dimN 40969 hdmaplkr 41896 aks4d1p8 42069 sticksstones1 42128 fsuppssind 42580 diophren 42801 islmodfg 43058 fsovcnvlem 44003 ntrneiel 44071 radcnvrat 44310 supminfxr 45414 stoweidlem34 45990 |
Copyright terms: Public domain | W3C validator |