| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3662 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 |
| This theorem is referenced by: unimax 4911 fnelfp 7152 fnelnfp 7154 fnse 8115 fin23lem30 10302 isf32lem5 10317 negn0 11614 ublbneg 12899 supminf 12901 sadval 16433 smuval 16458 dvdslcm 16575 dvdslcmf 16608 isprm2lem 16658 isacs1i 17625 isinito 17965 istermo 17966 subgacs 19100 nsgacs 19101 odngen 19514 sdrgacs 20717 lssacs 20880 mretopd 22986 txkgen 23546 xkoco1cn 23551 xkoco2cn 23552 xkoinjcn 23581 ordthmeolem 23695 shft2rab 25416 sca2rab 25420 lhop1lem 25925 ftalem5 26994 vmasum 27134 eqscut2 27725 elmade 27786 israg 28631 ebtwntg 28916 eupth2lem3lem3 30166 eupth2lem3lem4 30167 eupth2lem3lem6 30169 cycpmco2lem1 33090 cycpmco2lem4 33093 cycpmco2 33097 ssdifidllem 33434 1arithufdlem2 33523 tgoldbachgt 34661 cvmliftmolem1 35275 neibastop3 36357 fdc 37746 pclvalN 39891 dvhb1dimN 40987 hdmaplkr 41914 aks4d1p8 42082 sticksstones1 42141 fsuppssind 42588 diophren 42808 islmodfg 43065 fsovcnvlem 44009 ntrneiel 44077 radcnvrat 44310 supminfxr 45467 stoweidlem34 46039 |
| Copyright terms: Public domain | W3C validator |