Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3625 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 536 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 |
This theorem is referenced by: unimax 4878 fnelfp 7056 fnelnfp 7058 fnse 7983 fin23lem30 10107 isf32lem5 10122 negn0 11413 ublbneg 12682 supminf 12684 sadval 16172 smuval 16197 dvdslcm 16312 dvdslcmf 16345 isprm2lem 16395 isacs1i 17375 isinito 17720 istermo 17721 subgacs 18798 nsgacs 18799 odngen 19191 sdrgacs 20078 lssacs 20238 mretopd 22252 txkgen 22812 xkoco1cn 22817 xkoco2cn 22818 xkoinjcn 22847 ordthmeolem 22961 shft2rab 24681 sca2rab 24685 lhop1lem 25186 ftalem5 26235 vmasum 26373 israg 27067 ebtwntg 27359 eupth2lem3lem3 28603 eupth2lem3lem4 28604 eupth2lem3lem6 28606 cycpmco2lem1 31402 cycpmco2lem4 31405 cycpmco2 31409 tgoldbachgt 32652 cvmliftmolem1 33252 eqscut2 34009 elmade 34060 neibastop3 34560 fdc 35912 pclvalN 37911 dvhb1dimN 39007 hdmaplkr 39934 aks4d1p8 40102 sticksstones1 40109 fsuppssind 40289 diophren 40642 islmodfg 40901 fsovcnvlem 41628 ntrneiel 41698 radcnvrat 41939 supminfxr 43011 stoweidlem34 43582 |
Copyright terms: Public domain | W3C validator |