| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3642 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 |
| This theorem is referenced by: unimax 4893 fnelfp 7109 fnelnfp 7111 fnse 8063 fin23lem30 10233 isf32lem5 10248 negn0 11546 ublbneg 12831 supminf 12833 sadval 16367 smuval 16392 dvdslcm 16509 dvdslcmf 16542 isprm2lem 16592 isacs1i 17563 isinito 17903 istermo 17904 subgacs 19073 nsgacs 19074 odngen 19489 sdrgacs 20716 lssacs 20900 mretopd 23007 txkgen 23567 xkoco1cn 23572 xkoco2cn 23573 xkoinjcn 23602 ordthmeolem 23716 shft2rab 25436 sca2rab 25440 lhop1lem 25945 ftalem5 27014 vmasum 27154 eqscut2 27747 elmade 27812 israg 28675 ebtwntg 28960 eupth2lem3lem3 30210 eupth2lem3lem4 30211 eupth2lem3lem6 30213 cycpmco2lem1 33095 cycpmco2lem4 33098 cycpmco2 33102 ssdifidllem 33421 1arithufdlem2 33510 tgoldbachgt 34676 cvmliftmolem1 35325 neibastop3 36404 fdc 37793 pclvalN 39937 dvhb1dimN 41033 hdmaplkr 41960 aks4d1p8 42128 sticksstones1 42187 fsuppssind 42634 diophren 42854 islmodfg 43110 fsovcnvlem 44054 ntrneiel 44122 radcnvrat 44355 supminfxr 45510 stoweidlem34 46080 |
| Copyright terms: Public domain | W3C validator |