| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3659 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 |
| This theorem is referenced by: unimax 4908 fnelfp 7149 fnelnfp 7151 fnse 8112 fin23lem30 10295 isf32lem5 10310 negn0 11607 ublbneg 12892 supminf 12894 sadval 16426 smuval 16451 dvdslcm 16568 dvdslcmf 16601 isprm2lem 16651 isacs1i 17618 isinito 17958 istermo 17959 subgacs 19093 nsgacs 19094 odngen 19507 sdrgacs 20710 lssacs 20873 mretopd 22979 txkgen 23539 xkoco1cn 23544 xkoco2cn 23545 xkoinjcn 23574 ordthmeolem 23688 shft2rab 25409 sca2rab 25413 lhop1lem 25918 ftalem5 26987 vmasum 27127 eqscut2 27718 elmade 27779 israg 28624 ebtwntg 28909 eupth2lem3lem3 30159 eupth2lem3lem4 30160 eupth2lem3lem6 30162 cycpmco2lem1 33083 cycpmco2lem4 33086 cycpmco2 33090 ssdifidllem 33427 1arithufdlem2 33516 tgoldbachgt 34654 cvmliftmolem1 35268 neibastop3 36350 fdc 37739 pclvalN 39884 dvhb1dimN 40980 hdmaplkr 41907 aks4d1p8 42075 sticksstones1 42134 fsuppssind 42581 diophren 42801 islmodfg 43058 fsovcnvlem 44002 ntrneiel 44070 radcnvrat 44303 supminfxr 45460 stoweidlem34 46032 |
| Copyright terms: Public domain | W3C validator |