![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3684 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 537 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 |
This theorem is referenced by: unimax 4949 fnelfp 7173 fnelnfp 7175 fnse 8119 fin23lem30 10337 isf32lem5 10352 negn0 11643 ublbneg 12917 supminf 12919 sadval 16397 smuval 16422 dvdslcm 16535 dvdslcmf 16568 isprm2lem 16618 isacs1i 17601 isinito 17946 istermo 17947 subgacs 19041 nsgacs 19042 odngen 19445 sdrgacs 20417 lssacs 20578 mretopd 22596 txkgen 23156 xkoco1cn 23161 xkoco2cn 23162 xkoinjcn 23191 ordthmeolem 23305 shft2rab 25025 sca2rab 25029 lhop1lem 25530 ftalem5 26581 vmasum 26719 eqscut2 27307 elmade 27362 israg 27948 ebtwntg 28240 eupth2lem3lem3 29483 eupth2lem3lem4 29484 eupth2lem3lem6 29486 cycpmco2lem1 32285 cycpmco2lem4 32288 cycpmco2 32292 tgoldbachgt 33675 cvmliftmolem1 34272 neibastop3 35247 fdc 36613 pclvalN 38761 dvhb1dimN 39857 hdmaplkr 40784 aks4d1p8 40952 sticksstones1 40962 fsuppssind 41165 diophren 41551 islmodfg 41811 fsovcnvlem 42764 ntrneiel 42832 radcnvrat 43073 supminfxr 44174 stoweidlem34 44750 |
Copyright terms: Public domain | W3C validator |