| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3671 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 |
| This theorem is referenced by: unimax 4920 fnelfp 7167 fnelnfp 7169 fnse 8132 fin23lem30 10356 isf32lem5 10371 negn0 11666 ublbneg 12949 supminf 12951 sadval 16475 smuval 16500 dvdslcm 16617 dvdslcmf 16650 isprm2lem 16700 isacs1i 17669 isinito 18009 istermo 18010 subgacs 19144 nsgacs 19145 odngen 19558 sdrgacs 20761 lssacs 20924 mretopd 23030 txkgen 23590 xkoco1cn 23595 xkoco2cn 23596 xkoinjcn 23625 ordthmeolem 23739 shft2rab 25461 sca2rab 25465 lhop1lem 25970 ftalem5 27039 vmasum 27179 eqscut2 27770 elmade 27831 israg 28676 ebtwntg 28961 eupth2lem3lem3 30211 eupth2lem3lem4 30212 eupth2lem3lem6 30214 cycpmco2lem1 33137 cycpmco2lem4 33140 cycpmco2 33144 ssdifidllem 33471 1arithufdlem2 33560 tgoldbachgt 34695 cvmliftmolem1 35303 neibastop3 36380 fdc 37769 pclvalN 39909 dvhb1dimN 41005 hdmaplkr 41932 aks4d1p8 42100 sticksstones1 42159 fsuppssind 42616 diophren 42836 islmodfg 43093 fsovcnvlem 44037 ntrneiel 44105 radcnvrat 44338 supminfxr 45491 stoweidlem34 46063 |
| Copyright terms: Public domain | W3C validator |