![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3556 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 532 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 {crab 3093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 |
This theorem is referenced by: unimax 4665 fnelfp 6670 fnelnfp 6672 fnse 7531 fin23lem30 9452 isf32lem5 9467 negn0 10751 ublbneg 12018 supminf 12020 sadval 15513 smuval 15538 dvdslcm 15646 dvdslcmf 15679 isprm2lem 15728 isacs1i 16632 isinito 16964 istermo 16965 subgacs 17942 nsgacs 17943 odngen 18305 lssacs 19288 mretopd 21225 txkgen 21784 xkoco1cn 21789 xkoco2cn 21790 xkoinjcn 21819 ordthmeolem 21933 shft2rab 23616 sca2rab 23620 lhop1lem 24117 ftalem5 25155 vmasum 25293 israg 25948 ebtwntg 26219 eupth2lem3lem3 27575 eupth2lem3lem4 27576 eupth2lem3lem6 27578 tgoldbachgt 31261 cvmliftmolem1 31780 neibastop3 32869 fdc 34028 pclvalN 35911 dvhb1dimN 37007 hdmaplkr 37934 diophren 38163 islmodfg 38424 sdrgacs 38556 fsovcnvlem 39089 ntrneiel 39161 radcnvrat 39295 supminfxr 40437 stoweidlem34 40994 |
Copyright terms: Public domain | W3C validator |