| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
| Ref | Expression |
|---|---|
| elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3656 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 |
| This theorem is referenced by: unimax 4904 fnelfp 7131 fnelnfp 7133 fnse 8089 fin23lem30 10271 isf32lem5 10286 negn0 11583 ublbneg 12868 supminf 12870 sadval 16402 smuval 16427 dvdslcm 16544 dvdslcmf 16577 isprm2lem 16627 isacs1i 17598 isinito 17938 istermo 17939 subgacs 19075 nsgacs 19076 odngen 19491 sdrgacs 20721 lssacs 20905 mretopd 23012 txkgen 23572 xkoco1cn 23577 xkoco2cn 23578 xkoinjcn 23607 ordthmeolem 23721 shft2rab 25442 sca2rab 25446 lhop1lem 25951 ftalem5 27020 vmasum 27160 eqscut2 27752 elmade 27816 israg 28677 ebtwntg 28962 eupth2lem3lem3 30209 eupth2lem3lem4 30210 eupth2lem3lem6 30212 cycpmco2lem1 33098 cycpmco2lem4 33101 cycpmco2 33105 ssdifidllem 33420 1arithufdlem2 33509 tgoldbachgt 34647 cvmliftmolem1 35261 neibastop3 36343 fdc 37732 pclvalN 39877 dvhb1dimN 40973 hdmaplkr 41900 aks4d1p8 42068 sticksstones1 42127 fsuppssind 42574 diophren 42794 islmodfg 43051 fsovcnvlem 43995 ntrneiel 44063 radcnvrat 44296 supminfxr 45453 stoweidlem34 46025 |
| Copyright terms: Public domain | W3C validator |