Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3617 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 |
This theorem is referenced by: unimax 4874 fnelfp 7029 fnelnfp 7031 fnse 7945 fin23lem30 10029 isf32lem5 10044 negn0 11334 ublbneg 12602 supminf 12604 sadval 16091 smuval 16116 dvdslcm 16231 dvdslcmf 16264 isprm2lem 16314 isacs1i 17283 isinito 17627 istermo 17628 subgacs 18704 nsgacs 18705 odngen 19097 sdrgacs 19984 lssacs 20144 mretopd 22151 txkgen 22711 xkoco1cn 22716 xkoco2cn 22717 xkoinjcn 22746 ordthmeolem 22860 shft2rab 24577 sca2rab 24581 lhop1lem 25082 ftalem5 26131 vmasum 26269 israg 26962 ebtwntg 27253 eupth2lem3lem3 28495 eupth2lem3lem4 28496 eupth2lem3lem6 28498 cycpmco2lem1 31295 cycpmco2lem4 31298 cycpmco2 31302 tgoldbachgt 32543 cvmliftmolem1 33143 eqscut2 33927 elmade 33978 neibastop3 34478 fdc 35830 pclvalN 37831 dvhb1dimN 38927 hdmaplkr 39854 aks4d1p8 40023 sticksstones1 40030 fsuppssind 40205 diophren 40551 islmodfg 40810 fsovcnvlem 41510 ntrneiel 41580 radcnvrat 41821 supminfxr 42894 stoweidlem34 43465 |
Copyright terms: Public domain | W3C validator |