![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3708 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 |
This theorem is referenced by: unimax 4968 fnelfp 7209 fnelnfp 7211 fnse 8174 fin23lem30 10411 isf32lem5 10426 negn0 11719 ublbneg 12998 supminf 13000 sadval 16502 smuval 16527 dvdslcm 16645 dvdslcmf 16678 isprm2lem 16728 isacs1i 17715 isinito 18063 istermo 18064 subgacs 19201 nsgacs 19202 odngen 19619 sdrgacs 20824 lssacs 20988 mretopd 23121 txkgen 23681 xkoco1cn 23686 xkoco2cn 23687 xkoinjcn 23716 ordthmeolem 23830 shft2rab 25562 sca2rab 25566 lhop1lem 26072 ftalem5 27138 vmasum 27278 eqscut2 27869 elmade 27924 israg 28723 ebtwntg 29015 eupth2lem3lem3 30262 eupth2lem3lem4 30263 eupth2lem3lem6 30265 cycpmco2lem1 33119 cycpmco2lem4 33122 cycpmco2 33126 ssdifidllem 33449 1arithufdlem2 33538 tgoldbachgt 34640 cvmliftmolem1 35249 neibastop3 36328 fdc 37705 pclvalN 39847 dvhb1dimN 40943 hdmaplkr 41870 aks4d1p8 42044 sticksstones1 42103 fsuppssind 42548 diophren 42769 islmodfg 43026 fsovcnvlem 43975 ntrneiel 44043 radcnvrat 44283 supminfxr 45379 stoweidlem34 45955 |
Copyright terms: Public domain | W3C validator |