MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgreqdrusgr Structured version   Visualization version   GIF version

Theorem usgreqdrusgr 29553
Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
usgreqdrusgr ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾)
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem usgreqdrusgr
StepHypRef Expression
1 isrusgr0.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isrusgr0.d . . . 4 𝐷 = (VtxDeg‘𝐺)
31, 2isrusgr0 29551 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
433adant3 1132 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
54ibir 268 1 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  cfv 6536  0*cxnn0 12579  Vtxcvtx 28980  USGraphcusgr 29133  VtxDegcvtxdg 29450   RegUSGraph crusgr 29541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-iota 6489  df-fv 6544  df-rgr 29542  df-rusgr 29543
This theorem is referenced by:  fusgrn0eqdrusgr  29555  frgrregorufrg  30312
  Copyright terms: Public domain W3C validator