![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgreqdrusgr | Structured version Visualization version GIF version |
Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
usgreqdrusgr | ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺RegUSGraph𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | isrusgr0.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | 1, 2 | isrusgr0 26697 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
4 | 3 | 3adant3 1126 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
5 | 4 | ibir 257 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺RegUSGraph𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4787 ‘cfv 6030 ℕ0*cxnn0 11570 Vtxcvtx 26095 USGraphcusgr 26266 VtxDegcvtxdg 26596 RegUSGraphcrusgr 26687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-iota 5993 df-fv 6038 df-rgr 26688 df-rusgr 26689 |
This theorem is referenced by: fusgrn0eqdrusgr 26701 frgrregorufrg 27508 |
Copyright terms: Public domain | W3C validator |