![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgreqdrusgr | Structured version Visualization version GIF version |
Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr0.v | β’ π = (VtxβπΊ) |
isrusgr0.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
usgreqdrusgr | β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ) β πΊ RegUSGraph πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrusgr0.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | isrusgr0.d | . . . 4 β’ π· = (VtxDegβπΊ) | |
3 | 1, 2 | isrusgr0 29292 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0*) β (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
4 | 3 | 3adant3 1129 | . 2 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ) β (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ))) |
5 | 4 | ibir 268 | 1 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (π·βπ£) = πΎ) β πΊ RegUSGraph πΎ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3053 class class class wbr 5138 βcfv 6533 β0*cxnn0 12541 Vtxcvtx 28725 USGraphcusgr 28878 VtxDegcvtxdg 29191 RegUSGraph crusgr 29282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-iota 6485 df-fv 6541 df-rgr 29283 df-rusgr 29284 |
This theorem is referenced by: fusgrn0eqdrusgr 29296 frgrregorufrg 30048 |
Copyright terms: Public domain | W3C validator |