| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgreqdrusgr | Structured version Visualization version GIF version | ||
| Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| isrusgr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| isrusgr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| usgreqdrusgr | ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrusgr0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | isrusgr0.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 3 | 1, 2 | isrusgr0 29512 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾))) |
| 5 | 4 | ibir 268 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5092 ‘cfv 6482 ℕ0*cxnn0 12457 Vtxcvtx 28941 USGraphcusgr 29094 VtxDegcvtxdg 29411 RegUSGraph crusgr 29502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-iota 6438 df-fv 6490 df-rgr 29503 df-rusgr 29504 |
| This theorem is referenced by: fusgrn0eqdrusgr 29516 frgrregorufrg 30270 |
| Copyright terms: Public domain | W3C validator |