MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgreqdrusgr Structured version   Visualization version   GIF version

Theorem usgreqdrusgr 29547
Description: If all vertices in a simple graph have the same degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020.)
Hypotheses
Ref Expression
isrusgr0.v 𝑉 = (Vtx‘𝐺)
isrusgr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
usgreqdrusgr ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾)
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hints:   𝐷(𝑣)   𝑉(𝑣)

Proof of Theorem usgreqdrusgr
StepHypRef Expression
1 isrusgr0.v . . . 4 𝑉 = (Vtx‘𝐺)
2 isrusgr0.d . . . 4 𝐷 = (VtxDeg‘𝐺)
31, 2isrusgr0 29545 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
433adant3 1132 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → (𝐺 RegUSGraph 𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾)))
54ibir 268 1 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (𝐷𝑣) = 𝐾) → 𝐺 RegUSGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  cfv 6481  0*cxnn0 12454  Vtxcvtx 28974  USGraphcusgr 29127  VtxDegcvtxdg 29444   RegUSGraph crusgr 29535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-iota 6437  df-fv 6489  df-rgr 29536  df-rusgr 29537
This theorem is referenced by:  fusgrn0eqdrusgr  29549  frgrregorufrg  30306
  Copyright terms: Public domain W3C validator