![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isarep1 | Structured version Visualization version GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) (Proof shortened by SN, 19-Dec-2024.) |
Ref | Expression |
---|---|
isarep1 | ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . 3 ⊢ 𝑏 ∈ V | |
2 | 1 | elima 6062 | . 2 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏) |
3 | df-br 5148 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ 〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | vopelopabsb 5528 | . . . 4 ⊢ (〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
5 | 3, 4 | bitri 274 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
6 | 5 | rexbii 3094 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
7 | nfs1v 2153 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑 | |
8 | nfv 1917 | . . 3 ⊢ Ⅎ𝑧[𝑏 / 𝑦]𝜑 | |
9 | sbequ12r 2244 | . . 3 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
10 | 7, 8, 9 | cbvrexw 3304 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
11 | 2, 6, 10 | 3bitri 296 | 1 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∈ wcel 2106 ∃wrex 3070 〈cop 4633 class class class wbr 5147 {copab 5209 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |