MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep1 Structured version   Visualization version   GIF version

Theorem isarep1 6591
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) (Proof shortened by SN, 19-Dec-2024.)
Assertion
Ref Expression
isarep1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐴(𝑦,𝑏)

Proof of Theorem isarep1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . 3 𝑏 ∈ V
21elima 6019 . 2 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏)
3 df-br 5107 . . . 4 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
4 vopelopabsb 5487 . . . 4 (⟨𝑧, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
53, 4bitri 275 . . 3 (𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
65rexbii 3094 . 2 (∃𝑧𝐴 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑏 ↔ ∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑)
7 nfs1v 2154 . . 3 𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑
8 nfv 1918 . . 3 𝑧[𝑏 / 𝑦]𝜑
9 sbequ12r 2245 . . 3 (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑))
107, 8, 9cbvrexw 3289 . 2 (∃𝑧𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
112, 6, 103bitri 297 1 (𝑏 ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ↔ ∃𝑥𝐴 [𝑏 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068  wcel 2107  wrex 3070  cop 4593   class class class wbr 5106  {copab 5168  cima 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator