Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isarep1 | Structured version Visualization version GIF version |
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by 𝜑(𝑥, 𝑦) i.e. the class ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
isarep1 | ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . 3 ⊢ 𝑏 ∈ V | |
2 | 1 | elima 5963 | . 2 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏) |
3 | df-br 5071 | . . . 4 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ 〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
4 | opelopabsb 5436 | . . . 4 ⊢ (〈𝑧, 𝑏〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
5 | sbsbc 3715 | . . . . . 6 ⊢ ([𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑) | |
6 | 5 | sbbii 2080 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
7 | sbsbc 3715 | . . . . 5 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) | |
8 | 6, 7 | bitr2i 275 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
9 | 3, 4, 8 | 3bitri 296 | . . 3 ⊢ (𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
10 | 9 | rexbii 3177 | . 2 ⊢ (∃𝑧 ∈ 𝐴 𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}𝑏 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑) |
11 | nfs1v 2155 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥][𝑏 / 𝑦]𝜑 | |
12 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧[𝑏 / 𝑦]𝜑 | |
13 | sbequ12r 2248 | . . 3 ⊢ (𝑧 = 𝑥 → ([𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ [𝑏 / 𝑦]𝜑)) | |
14 | 11, 12, 13 | cbvrexw 3364 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥][𝑏 / 𝑦]𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
15 | 2, 10, 14 | 3bitri 296 | 1 ⊢ (𝑏 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 [𝑏 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 ∈ wcel 2108 ∃wrex 3064 [wsbc 3711 〈cop 4564 class class class wbr 5070 {copab 5132 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |