MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.26 Structured version   Visualization version   GIF version

Theorem tz6.26 6349
Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Assertion
Ref Expression
tz6.26 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem tz6.26
StepHypRef Expression
1 wefr 5657 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5658 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5593 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . . 4 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
82, 6, 73jca 1128 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴))
9 frpomin2 6343 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
108, 9sylan 580 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wne 2931  wrex 3059  wss 3933  c0 4315   Po wpo 5572   Or wor 5573   Fr wfr 5616   Se wse 5617   We wwe 5618  Predcpred 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303
This theorem is referenced by:  tz6.26i  6351  wfiOLD  6353  wzel  35766  wsuclem  35767
  Copyright terms: Public domain W3C validator