MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem14OLD Structured version   Visualization version   GIF version

Theorem wfrlem14OLD 8341
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. Compute the value of 𝐶. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem14OLD (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐹,𝑧   𝑦,𝐺   𝑦,𝑅,𝑧   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem14OLD
StepHypRef Expression
1 wfrlem13OLD.1 . . 3 𝑅 We 𝐴
2 wfrlem13OLD.2 . . 3 𝑅 Se 𝐴
3 wfrlem13OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13OLD.4 . . 3 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13OLD 8340 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
6 elun 4133 . . . 4 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
7 velsn 4622 . . . . 5 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
87orbi2i 912 . . . 4 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
96, 8bitri 275 . . 3 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
101, 2, 3wfrlem12OLD 8339 . . . . . . 7 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
11 fnfun 6643 . . . . . . . 8 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶)
12 ssun1 4158 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1312, 4sseqtrri 4013 . . . . . . . . 9 𝐹𝐶
14 funssfv 6902 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶𝑦) = (𝐹𝑦))
153wfrdmclOLD 8336 . . . . . . . . . . . 12 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
16 fun2ssres 6586 . . . . . . . . . . . 12 ((Fun 𝐶𝐹𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1715, 16syl3an3 1165 . . . . . . . . . . 11 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1817fveq2d 6885 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1914, 18eqeq12d 2752 . . . . . . . . 9 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2013, 19mp3an2 1451 . . . . . . . 8 ((Fun 𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2111, 20sylan 580 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2210, 21imbitrrid 246 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2322ex 412 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
2423pm2.43d 53 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
25 vsnid 4644 . . . . . . 7 𝑧 ∈ {𝑧}
26 elun2 4163 . . . . . . 7 (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . 6 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
284reseq1i 5967 . . . . . . . . . . . . 13 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
29 resundir 5986 . . . . . . . . . . . . 13 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
30 wefr 5649 . . . . . . . . . . . . . . . . 17 (𝑅 We 𝐴𝑅 Fr 𝐴)
311, 30ax-mp 5 . . . . . . . . . . . . . . . 16 𝑅 Fr 𝐴
32 predfrirr 6328 . . . . . . . . . . . . . . . 16 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
33 ressnop0 7148 . . . . . . . . . . . . . . . 16 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
3431, 32, 33mp2b 10 . . . . . . . . . . . . . . 15 ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅
3534uneq2i 4145 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅)
36 un0 4374 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3735, 36eqtri 2759 . . . . . . . . . . . . 13 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3828, 29, 373eqtri 2763 . . . . . . . . . . . 12 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3938fveq2i 6884 . . . . . . . . . . 11 (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
4039opeq2i 4858 . . . . . . . . . 10 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩
41 opex 5444 . . . . . . . . . . 11 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ V
4241elsn 4621 . . . . . . . . . 10 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩)
4340, 42mpbir 231 . . . . . . . . 9 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
44 elun2 4163 . . . . . . . . 9 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} → ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
4543, 44ax-mp 5 . . . . . . . 8 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
4645, 4eleqtrri 2834 . . . . . . 7 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶
47 fnopfvb 6935 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶))
4846, 47mpbiri 258 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
4927, 48mpan2 691 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
50 fveq2 6881 . . . . . 6 (𝑦 = 𝑧 → (𝐶𝑦) = (𝐶𝑧))
51 predeq3 6299 . . . . . . . 8 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
5251reseq2d 5971 . . . . . . 7 (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
5352fveq2d 6885 . . . . . 6 (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
5450, 53eqeq12d 2752 . . . . 5 (𝑦 = 𝑧 → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
5549, 54syl5ibrcom 247 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5624, 55jaod 859 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
579, 56biimtrid 242 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
585, 57syl 17 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612   Fr wfr 5608   Se wse 5609   We wwe 5610  dom cdm 5659  cres 5661  Predcpred 6294  Fun wfun 6530   Fn wfn 6531  cfv 6536  wrecscwrecs 8315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316
This theorem is referenced by:  wfrlem15OLD  8342
  Copyright terms: Public domain W3C validator