Proof of Theorem wfrlem14OLD
| Step | Hyp | Ref
| Expression |
| 1 | | wfrlem13OLD.1 |
. . 3
⊢ 𝑅 We 𝐴 |
| 2 | | wfrlem13OLD.2 |
. . 3
⊢ 𝑅 Se 𝐴 |
| 3 | | wfrlem13OLD.3 |
. . 3
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| 4 | | wfrlem13OLD.4 |
. . 3
⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 5 | 1, 2, 3, 4 | wfrlem13OLD 8344 |
. 2
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| 6 | | elun 4135 |
. . . 4
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧})) |
| 7 | | velsn 4624 |
. . . . 5
⊢ (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧) |
| 8 | 7 | orbi2i 912 |
. . . 4
⊢ ((𝑦 ∈ dom 𝐹 ∨ 𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 9 | 6, 8 | bitri 275 |
. . 3
⊢ (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧)) |
| 10 | 1, 2, 3 | wfrlem12OLD 8343 |
. . . . . . 7
⊢ (𝑦 ∈ dom 𝐹 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 11 | | fnfun 6649 |
. . . . . . . 8
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶) |
| 12 | | ssun1 4160 |
. . . . . . . . . 10
⊢ 𝐹 ⊆ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 13 | 12, 4 | sseqtrri 4015 |
. . . . . . . . 9
⊢ 𝐹 ⊆ 𝐶 |
| 14 | | funssfv 6908 |
. . . . . . . . . 10
⊢ ((Fun
𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹) → (𝐶‘𝑦) = (𝐹‘𝑦)) |
| 15 | 3 | wfrdmclOLD 8340 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) |
| 16 | | fun2ssres 6592 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 17 | 15, 16 | syl3an3 1165 |
. . . . . . . . . . 11
⊢ ((Fun
𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 18 | 17 | fveq2d 6891 |
. . . . . . . . . 10
⊢ ((Fun
𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 19 | 14, 18 | eqeq12d 2750 |
. . . . . . . . 9
⊢ ((Fun
𝐶 ∧ 𝐹 ⊆ 𝐶 ∧ 𝑦 ∈ dom 𝐹) → ((𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 20 | 13, 19 | mp3an2 1450 |
. . . . . . . 8
⊢ ((Fun
𝐶 ∧ 𝑦 ∈ dom 𝐹) → ((𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 21 | 11, 20 | sylan 580 |
. . . . . . 7
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 22 | 10, 21 | imbitrrid 246 |
. . . . . 6
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 23 | 22 | ex 412 |
. . . . 5
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
| 24 | 23 | pm2.43d 53 |
. . . 4
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 25 | | vsnid 4645 |
. . . . . . 7
⊢ 𝑧 ∈ {𝑧} |
| 26 | | elun2 4165 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . 6
⊢ 𝑧 ∈ (dom 𝐹 ∪ {𝑧}) |
| 28 | 4 | reseq1i 5975 |
. . . . . . . . . . . . 13
⊢ (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 29 | | resundir 5994 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 30 | | wefr 5657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| 31 | 1, 30 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ 𝑅 Fr 𝐴 |
| 32 | | predfrirr 6336 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧)) |
| 33 | | ressnop0 7154 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅) |
| 34 | 31, 32, 33 | mp2b 10 |
. . . . . . . . . . . . . . 15
⊢
({〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅ |
| 35 | 34 | uneq2i 4147 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) |
| 36 | | un0 4376 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 37 | 35, 36 | eqtri 2757 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 38 | 28, 29, 37 | 3eqtri 2761 |
. . . . . . . . . . . 12
⊢ (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 39 | 38 | fveq2i 6890 |
. . . . . . . . . . 11
⊢ (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 40 | 39 | opeq2i 4859 |
. . . . . . . . . 10
⊢
〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 = 〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 |
| 41 | | opex 5451 |
. . . . . . . . . . 11
⊢
〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ V |
| 42 | 41 | elsn 4623 |
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} ↔ 〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 = 〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉) |
| 43 | 40, 42 | mpbir 231 |
. . . . . . . . 9
⊢
〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} |
| 44 | | elun2 4165 |
. . . . . . . . 9
⊢
(〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} → 〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
⊢
〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 46 | 45, 4 | eleqtrri 2832 |
. . . . . . 7
⊢
〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ 𝐶 |
| 47 | | fnopfvb 6941 |
. . . . . . 7
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶‘𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ 〈𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))〉 ∈ 𝐶)) |
| 48 | 46, 47 | mpbiri 258 |
. . . . . 6
⊢ ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶‘𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 49 | 27, 48 | mpan2 691 |
. . . . 5
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 50 | | fveq2 6887 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐶‘𝑦) = (𝐶‘𝑧)) |
| 51 | | predeq3 6307 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧)) |
| 52 | 51 | reseq2d 5979 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 53 | 52 | fveq2d 6891 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 54 | 50, 53 | eqeq12d 2750 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶‘𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))) |
| 55 | 49, 54 | syl5ibrcom 247 |
. . . 4
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 56 | 24, 55 | jaod 859 |
. . 3
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹 ∨ 𝑦 = 𝑧) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 57 | 9, 56 | biimtrid 242 |
. 2
⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 58 | 5, 57 | syl 17 |
1
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶‘𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))) |