MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem14OLD Structured version   Visualization version   GIF version

Theorem wfrlem14OLD 8269
Description: Lemma for well-ordered recursion. Compute the value of 𝐶. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem14OLD (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐹,𝑧   𝑦,𝐺   𝑦,𝑅,𝑧   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem14OLD
StepHypRef Expression
1 wfrlem13OLD.1 . . 3 𝑅 We 𝐴
2 wfrlem13OLD.2 . . 3 𝑅 Se 𝐴
3 wfrlem13OLD.3 . . 3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 wfrlem13OLD.4 . . 3 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
51, 2, 3, 4wfrlem13OLD 8268 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
6 elun 4109 . . . 4 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}))
7 velsn 4603 . . . . 5 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
87orbi2i 912 . . . 4 ((𝑦 ∈ dom 𝐹𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
96, 8bitri 275 . . 3 (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) ↔ (𝑦 ∈ dom 𝐹𝑦 = 𝑧))
101, 2, 3wfrlem12OLD 8267 . . . . . . 7 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
11 fnfun 6603 . . . . . . . 8 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → Fun 𝐶)
12 ssun1 4133 . . . . . . . . . 10 𝐹 ⊆ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
1312, 4sseqtrri 3982 . . . . . . . . 9 𝐹𝐶
14 funssfv 6864 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶𝑦) = (𝐹𝑦))
153wfrdmclOLD 8264 . . . . . . . . . . . 12 (𝑦 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹)
16 fun2ssres 6547 . . . . . . . . . . . 12 ((Fun 𝐶𝐹𝐶 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1715, 16syl3an3 1166 . . . . . . . . . . 11 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))
1817fveq2d 6847 . . . . . . . . . 10 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1914, 18eqeq12d 2753 . . . . . . . . 9 ((Fun 𝐶𝐹𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2013, 19mp3an2 1450 . . . . . . . 8 ((Fun 𝐶𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2111, 20sylan 581 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2210, 21syl5ibr 246 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑦 ∈ dom 𝐹) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2322ex 414 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))))))
2423pm2.43d 53 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ dom 𝐹 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
25 vsnid 4624 . . . . . . 7 𝑧 ∈ {𝑧}
26 elun2 4138 . . . . . . 7 (𝑧 ∈ {𝑧} → 𝑧 ∈ (dom 𝐹 ∪ {𝑧}))
2725, 26ax-mp 5 . . . . . 6 𝑧 ∈ (dom 𝐹 ∪ {𝑧})
284reseq1i 5934 . . . . . . . . . . . . 13 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧))
29 resundir 5953 . . . . . . . . . . . . 13 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ↾ Pred(𝑅, 𝐴, 𝑧)) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)))
30 wefr 5624 . . . . . . . . . . . . . . . . 17 (𝑅 We 𝐴𝑅 Fr 𝐴)
311, 30ax-mp 5 . . . . . . . . . . . . . . . 16 𝑅 Fr 𝐴
32 predfrirr 6289 . . . . . . . . . . . . . . . 16 (𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧))
33 ressnop0 7100 . . . . . . . . . . . . . . . 16 𝑧 ∈ Pred(𝑅, 𝐴, 𝑧) → ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅)
3431, 32, 33mp2b 10 . . . . . . . . . . . . . . 15 ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧)) = ∅
3534uneq2i 4121 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅)
36 un0 4351 . . . . . . . . . . . . . 14 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ∅) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3735, 36eqtri 2765 . . . . . . . . . . . . 13 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ ({⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3828, 29, 373eqtri 2769 . . . . . . . . . . . 12 (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))
3938fveq2i 6846 . . . . . . . . . . 11 (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
4039opeq2i 4835 . . . . . . . . . 10 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩
41 opex 5422 . . . . . . . . . . 11 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ V
4241elsn 4602 . . . . . . . . . 10 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ = ⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩)
4340, 42mpbir 230 . . . . . . . . 9 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
44 elun2 4138 . . . . . . . . 9 (⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} → ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
4543, 44ax-mp 5 . . . . . . . 8 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
4645, 4eleqtrri 2837 . . . . . . 7 𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶
47 fnopfvb 6897 . . . . . . 7 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → ((𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))) ↔ ⟨𝑧, (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩ ∈ 𝐶))
4846, 47mpbiri 258 . . . . . 6 ((𝐶 Fn (dom 𝐹 ∪ {𝑧}) ∧ 𝑧 ∈ (dom 𝐹 ∪ {𝑧})) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
4927, 48mpan2 690 . . . . 5 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
50 fveq2 6843 . . . . . 6 (𝑦 = 𝑧 → (𝐶𝑦) = (𝐶𝑧))
51 predeq3 6258 . . . . . . . 8 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
5251reseq2d 5938 . . . . . . 7 (𝑦 = 𝑧 → (𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))
5352fveq2d 6847 . . . . . 6 (𝑦 = 𝑧 → (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧))))
5450, 53eqeq12d 2753 . . . . 5 (𝑦 = 𝑧 → ((𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐶𝑧) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑧)))))
5549, 54syl5ibrcom 247 . . . 4 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 = 𝑧 → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5624, 55jaod 858 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → ((𝑦 ∈ dom 𝐹𝑦 = 𝑧) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
579, 56biimtrid 241 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
585, 57syl 17 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑦 ∈ (dom 𝐹 ∪ {𝑧}) → (𝐶𝑦) = (𝐺‘(𝐶 ↾ Pred(𝑅, 𝐴, 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  cdif 3908  cun 3909  wss 3911  c0 4283  {csn 4587  cop 4593   Fr wfr 5586   Se wse 5587   We wwe 5588  dom cdm 5634  cres 5636  Predcpred 6253  Fun wfun 6491   Fn wfn 6492  cfv 6497  wrecscwrecs 8243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-ov 7361  df-2nd 7923  df-frecs 8213  df-wrecs 8244
This theorem is referenced by:  wfrlem15OLD  8270
  Copyright terms: Public domain W3C validator