MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfisg Structured version   Visualization version   GIF version

Theorem wfisg 6254
Description: Well-Ordered Induction Schema. If a property passes from all elements less than 𝑦 of a well-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfisg.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
wfisg ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem wfisg
StepHypRef Expression
1 wefr 5579 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 481 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5580 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5522 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 481 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 485 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfisg.1 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
98adantl 482 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑦𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
109frpoinsg 6244 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
112, 6, 7, 10syl3anc 1370 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2110  wral 3066  [wsbc 3720   Po wpo 5501   Or wor 5502   Fr wfr 5541   Se wse 5542   We wwe 5543  Predcpred 6199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200
This theorem is referenced by:  wfis  6256  wfis2fgOLD  6258
  Copyright terms: Public domain W3C validator