MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrfun Structured version   Visualization version   GIF version

Theorem wfrfun 8302
Description: The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfrfun.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrfun ((𝑅 We 𝐴𝑅 Se 𝐴) → Fun 𝐹)

Proof of Theorem wfrfun
StepHypRef Expression
1 wefr 5628 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5629 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5565 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfrfun.1 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
9 df-wrecs 8291 . . . 4 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
108, 9eqtri 2752 . . 3 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1110fprfung 8288 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → Fun 𝐹)
122, 6, 7, 11syl3anc 1373 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540   Po wpo 5544   Or wor 5545   Fr wfr 5588   Se wse 5589   We wwe 5590  ccom 5642  Fun wfun 6505  2nd c2nd 7967  frecscfrecs 8259  wrecscwrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291
This theorem is referenced by:  bpolylem  16014
  Copyright terms: Public domain W3C validator