| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrfun | Structured version Visualization version GIF version | ||
| Description: The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| wfrfun.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfrfun | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5604 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
| 3 | weso 5605 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | sopo 5541 | . . . 4 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
| 7 | simpr 484 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 8 | wfrfun.1 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 9 | df-wrecs 8242 | . . . 4 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
| 10 | 8, 9 | eqtri 2754 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
| 11 | 10 | fprfung 8239 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| 12 | 2, 6, 7, 11 | syl3anc 1373 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Po wpo 5520 Or wor 5521 Fr wfr 5564 Se wse 5565 We wwe 5566 ∘ ccom 5618 Fun wfun 6475 2nd c2nd 7920 frecscfrecs 8210 wrecscwrecs 8241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-frecs 8211 df-wrecs 8242 |
| This theorem is referenced by: bpolylem 15955 |
| Copyright terms: Public domain | W3C validator |