| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrfun | Structured version Visualization version GIF version | ||
| Description: The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| wfrfun.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfrfun | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5630 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
| 3 | weso 5631 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | sopo 5567 | . . . 4 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
| 7 | simpr 484 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 8 | wfrfun.1 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 9 | df-wrecs 8293 | . . . 4 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
| 10 | 8, 9 | eqtri 2753 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
| 11 | 10 | fprfung 8290 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| 12 | 2, 6, 7, 11 | syl3anc 1373 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Po wpo 5546 Or wor 5547 Fr wfr 5590 Se wse 5591 We wwe 5592 ∘ ccom 5644 Fun wfun 6507 2nd c2nd 7969 frecscfrecs 8261 wrecscwrecs 8292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 df-ov 7392 df-frecs 8262 df-wrecs 8293 |
| This theorem is referenced by: bpolylem 16020 |
| Copyright terms: Public domain | W3C validator |