MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrfun Structured version   Visualization version   GIF version

Theorem wfrfun 8373
Description: The "function" generated by the well-ordered recursion generator is indeed a function. Avoids the axiom of replacement. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 17-Nov-2024.)
Hypothesis
Ref Expression
wfrfun.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrfun ((𝑅 We 𝐴𝑅 Se 𝐴) → Fun 𝐹)

Proof of Theorem wfrfun
StepHypRef Expression
1 wefr 5674 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5675 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5610 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfrfun.1 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
9 df-wrecs 8338 . . . 4 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
108, 9eqtri 2764 . . 3 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1110fprfung 8335 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → Fun 𝐹)
122, 6, 7, 11syl3anc 1372 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539   Po wpo 5589   Or wor 5590   Fr wfr 5633   Se wse 5634   We wwe 5635  ccom 5688  Fun wfun 6554  2nd c2nd 8014  frecscfrecs 8306  wrecscwrecs 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568  df-ov 7435  df-frecs 8307  df-wrecs 8338
This theorem is referenced by:  bpolylem  16085
  Copyright terms: Public domain W3C validator