MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2a Structured version   Visualization version   GIF version

Theorem wfr2a 8255
Description: A weak version of wfr2 8257 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
wfrfun.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2a (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2a
StepHypRef Expression
1 wefr 5606 . . . . 5 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5607 . . . . . 6 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5543 . . . . . 6 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . . . 5 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
82, 6, 73jca 1128 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴))
9 wfrfun.1 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
10 df-wrecs 8242 . . . . 5 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
119, 10eqtri 2754 . . . 4 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1211fpr2a 8232 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
138, 12sylan 580 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
14 simpr 484 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ dom 𝐹)
159wfrresex 8254 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
1614, 15opco2 8054 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
1713, 16eqtrd 2766 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436   Po wpo 5522   Or wor 5523   Fr wfr 5566   Se wse 5567   We wwe 5568  dom cdm 5616  cres 5618  ccom 5620  Predcpred 6247  cfv 6481  (class class class)co 7346  2nd c2nd 7920  frecscfrecs 8210  wrecscwrecs 8241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242
This theorem is referenced by:  wfr2  8257
  Copyright terms: Public domain W3C validator