| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfr2a | Structured version Visualization version GIF version | ||
| Description: A weak version of wfr2 8263 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| wfrfun.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfr2a | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5609 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
| 3 | weso 5610 | . . . . . 6 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | sopo 5546 | . . . . . 6 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 8 | 2, 6, 7 | 3jca 1128 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴)) |
| 9 | wfrfun.1 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 10 | df-wrecs 8248 | . . . . 5 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
| 11 | 9, 10 | eqtri 2756 | . . . 4 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
| 12 | 11 | fpr2a 8238 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| 13 | 8, 12 | sylan 580 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| 14 | simpr 484 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ dom 𝐹) | |
| 15 | 9 | wfrresex 8260 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) |
| 16 | 14, 15 | opco2 8060 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| 17 | 13, 16 | eqtrd 2768 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 Po wpo 5525 Or wor 5526 Fr wfr 5569 Se wse 5570 We wwe 5571 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 Predcpred 6252 ‘cfv 6486 (class class class)co 7352 2nd c2nd 7926 frecscfrecs 8216 wrecscwrecs 8247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 |
| This theorem is referenced by: wfr2 8263 |
| Copyright terms: Public domain | W3C validator |