MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2a Structured version   Visualization version   GIF version

Theorem wfr2a 8307
Description: A weak version of wfr2 8309 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
wfrfun.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2a (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2a
StepHypRef Expression
1 wefr 5631 . . . . 5 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5632 . . . . . 6 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5568 . . . . . 6 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . . . 5 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
82, 6, 73jca 1128 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴))
9 wfrfun.1 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
10 df-wrecs 8294 . . . . 5 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
119, 10eqtri 2753 . . . 4 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1211fpr2a 8284 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
138, 12sylan 580 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
14 simpr 484 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ dom 𝐹)
159wfrresex 8306 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
1614, 15opco2 8106 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
1713, 16eqtrd 2765 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450   Po wpo 5547   Or wor 5548   Fr wfr 5591   Se wse 5592   We wwe 5593  dom cdm 5641  cres 5643  ccom 5645  Predcpred 6276  cfv 6514  (class class class)co 7390  2nd c2nd 7970  frecscfrecs 8262  wrecscwrecs 8293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-2nd 7972  df-frecs 8263  df-wrecs 8294
This theorem is referenced by:  wfr2  8309
  Copyright terms: Public domain W3C validator