![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfr2a | Structured version Visualization version GIF version |
Description: A weak version of wfr2 8283 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020.) (Proof shortened by Scott Fenton, 18-Nov-2024.) |
Ref | Expression |
---|---|
wfrfun.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr2a | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5624 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | 1 | adantr 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
3 | weso 5625 | . . . . . 6 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
4 | sopo 5565 | . . . . . 6 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
6 | 5 | adantr 482 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
7 | simpr 486 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
8 | 2, 6, 7 | 3jca 1129 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴)) |
9 | wfrfun.1 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
10 | df-wrecs 8244 | . . . . 5 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
11 | 9, 10 | eqtri 2761 | . . . 4 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
12 | 11 | fpr2a 8234 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
13 | 8, 12 | sylan 581 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
14 | simpr 486 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ dom 𝐹) | |
15 | 9 | wfrresex 8280 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) |
16 | 14, 15 | opco2 8057 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝑋(𝐺 ∘ 2nd )(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
17 | 13, 16 | eqtrd 2773 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3444 Po wpo 5544 Or wor 5545 Fr wfr 5586 Se wse 5587 We wwe 5588 dom cdm 5634 ↾ cres 5636 ∘ ccom 5638 Predcpred 6253 ‘cfv 6497 (class class class)co 7358 2nd c2nd 7921 frecscfrecs 8212 wrecscwrecs 8243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-ov 7361 df-2nd 7923 df-frecs 8213 df-wrecs 8244 |
This theorem is referenced by: wfr2 8283 |
Copyright terms: Public domain | W3C validator |