MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   GIF version

Theorem wemapso 9504
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.)
Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemapso ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapso
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapso.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 ssid 3969 . 2 (𝐵m 𝐴) ⊆ (𝐵m 𝐴)
3 weso 5629 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
43adantr 480 . 2 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑅 Or 𝐴)
5 simpr 484 . 2 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑆 Or 𝐵)
6 vex 3451 . . . . . 6 𝑎 ∈ V
76difexi 5285 . . . . 5 (𝑎𝑏) ∈ V
87dmex 7885 . . . 4 dom (𝑎𝑏) ∈ V
98a1i 11 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ V)
10 wefr 5628 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
1110ad2antrr 726 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑅 Fr 𝐴)
12 difss 4099 . . . . 5 (𝑎𝑏) ⊆ 𝑎
13 dmss 5866 . . . . 5 ((𝑎𝑏) ⊆ 𝑎 → dom (𝑎𝑏) ⊆ dom 𝑎)
1412, 13ax-mp 5 . . . 4 dom (𝑎𝑏) ⊆ dom 𝑎
15 simprll 778 . . . . 5 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
16 elmapi 8822 . . . . 5 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
1715, 16syl 17 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
1814, 17fssdm 6707 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ 𝐴)
19 simprr 772 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎𝑏)
2017ffnd 6689 . . . . . 6 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
21 simprlr 779 . . . . . . . 8 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
22 elmapi 8822 . . . . . . . 8 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2321, 22syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2423ffnd 6689 . . . . . 6 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
25 fndmdifeq0 7016 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2620, 24, 25syl2anc 584 . . . . 5 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2726necon3bid 2969 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
2819, 27mpbird 257 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
29 fri 5596 . . 3 (((dom (𝑎𝑏) ∈ V ∧ 𝑅 Fr 𝐴) ∧ (dom (𝑎𝑏) ⊆ 𝐴 ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
309, 11, 18, 28, 29syl22anc 838 . 2 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
311, 2, 4, 5, 30wemapsolem 9503 1 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  c0 4296   class class class wbr 5107  {copab 5169   Or wor 5545   Fr wfr 5588   We wwe 5590  dom cdm 5638   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  opsrtoslem2  21963  wepwso  43032
  Copyright terms: Public domain W3C validator