MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso Structured version   Visualization version   GIF version

Theorem wemapso 9444
Description: Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.)
Hypothesis
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
wemapso ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wemapso
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapso.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 ssid 3953 . 2 (𝐵m 𝐴) ⊆ (𝐵m 𝐴)
3 weso 5610 . . 3 (𝑅 We 𝐴𝑅 Or 𝐴)
43adantr 480 . 2 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑅 Or 𝐴)
5 simpr 484 . 2 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑆 Or 𝐵)
6 vex 3441 . . . . . 6 𝑎 ∈ V
76difexi 5270 . . . . 5 (𝑎𝑏) ∈ V
87dmex 7845 . . . 4 dom (𝑎𝑏) ∈ V
98a1i 11 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ V)
10 wefr 5609 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
1110ad2antrr 726 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑅 Fr 𝐴)
12 difss 4085 . . . . 5 (𝑎𝑏) ⊆ 𝑎
13 dmss 5846 . . . . 5 ((𝑎𝑏) ⊆ 𝑎 → dom (𝑎𝑏) ⊆ dom 𝑎)
1412, 13ax-mp 5 . . . 4 dom (𝑎𝑏) ⊆ dom 𝑎
15 simprll 778 . . . . 5 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
16 elmapi 8779 . . . . 5 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
1715, 16syl 17 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
1814, 17fssdm 6675 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ 𝐴)
19 simprr 772 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎𝑏)
2017ffnd 6657 . . . . . 6 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
21 simprlr 779 . . . . . . . 8 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
22 elmapi 8779 . . . . . . . 8 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2321, 22syl 17 . . . . . . 7 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2423ffnd 6657 . . . . . 6 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
25 fndmdifeq0 6983 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2620, 24, 25syl2anc 584 . . . . 5 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
2726necon3bid 2973 . . . 4 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
2819, 27mpbird 257 . . 3 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
29 fri 5577 . . 3 (((dom (𝑎𝑏) ∈ V ∧ 𝑅 Fr 𝐴) ∧ (dom (𝑎𝑏) ⊆ 𝐴 ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
309, 11, 18, 28, 29syl22anc 838 . 2 (((𝑅 We 𝐴𝑆 Or 𝐵) ∧ ((𝑎 ∈ (𝐵m 𝐴) ∧ 𝑏 ∈ (𝐵m 𝐴)) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
311, 2, 4, 5, 30wemapsolem 9443 1 ((𝑅 We 𝐴𝑆 Or 𝐵) → 𝑇 Or (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cdif 3895  wss 3898  c0 4282   class class class wbr 5093  {copab 5155   Or wor 5526   Fr wfr 5569   We wwe 5571  dom cdm 5619   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758
This theorem is referenced by:  opsrtoslem2  21992  wepwso  43161
  Copyright terms: Public domain W3C validator